Activity Trends of Methane Oxidation Catalysts under Emission Conditions

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 238
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorBang, Gi Jooko
dc.contributor.authorGu, Geun Hoko
dc.contributor.authorNoh, Juhwanko
dc.contributor.authorJung, Yousungko
dc.date.accessioned2022-08-30T03:00:14Z-
dc.date.available2022-08-30T03:00:14Z-
dc.date.created2022-08-29-
dc.date.created2022-08-29-
dc.date.created2022-08-29-
dc.date.issued2022-08-
dc.identifier.citationACS CATALYSIS, v.12, no.16, pp.10255 - 10263-
dc.identifier.issn2155-5435-
dc.identifier.urihttp://hdl.handle.net/10203/298214-
dc.description.abstractThe emission of unburned exhaust methane from natural-gas-based combustion engines is an important source of greenhouse gas to control. Rutile IrO2 has shown great potential as a methane oxidation catalyst, but further developments for practical use have been slow as the kinetic mechanism and design principles under exhaust conditions are poorly understood. Here, we demonstrate the experiment-validated first-principles-based microkinetic model (MKM) for IrO2 to elucidate the mechanistic insights and develop the descriptor-based MKM screening pipeline to discover feasible catalysts for methane complete oxidation. The framework uses a minimal number of ab initio descriptors suggested by sensitivity analysis and scaling relations, equipped further with a machine learning model to extend the search space to a larger scale. We search through hundreds of doped rutile oxides by constructing the MKM-based activity map and suggest promising Pareto-optimum candidates. The proposed workflow can be extended to explore other industrial catalysts under experimental conditions.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleActivity Trends of Methane Oxidation Catalysts under Emission Conditions-
dc.typeArticle-
dc.identifier.wosid000840979100001-
dc.identifier.scopusid2-s2.0-85136072793-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue16-
dc.citation.beginningpage10255-
dc.citation.endingpage10263-
dc.citation.publicationnameACS CATALYSIS-
dc.identifier.doi10.1021/acscatal.2c00842-
dc.contributor.localauthorJung, Yousung-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorab initio calculations-
dc.subject.keywordAuthormicrokinetic model-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorhigh-throughput screening-
dc.subject.keywordAuthormethane oxidation-
dc.subject.keywordAuthoroxidative condition-
dc.subject.keywordAuthorIrO2-
dc.subject.keywordPlusH BOND ACTIVATION-
dc.subject.keywordPlusLOW-TEMPERATURE-
dc.subject.keywordPlusSCALING RELATIONS-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusCOMBUSTION-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusPOINTS-
dc.subject.keywordPlusSTATE-
dc.subject.keywordPlusCH4-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0