OmniScatter: Extreme Sensitivity mmWave Backscattering Using Commodity FMCW Radar

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 449
  • Download : 0
Massive connectivity is a key to the success of the Internet of Things. While mmWave backscatter has great potential, substantial signal attenuation and overwhelming ambient reflections impose significant challenges. We present OmniScatter, a practical mmWave backscatter with an extreme sensitivity of -115 dBm. The performance is theoretically comparable to the popular commodity RFID EPC Gen2 (900 MHz), and is empirically validated via evaluations under various practical settings with abundant ambient reflections and blockages - e.g., In an office where a tag is locked in a wooden closet 6m away, as well in libraries and retail stores where a tag is placed across two rows of metal shelves. At the heart of OmniScatter is the new High Definition FMCW (HD-FMCW), which interplays with the tag (FSK) signal to disentangle the ambient reflections from the tag signal in the frequency domain, essentially offering immunity to ambient reflections. To further support practical deployment, OmniScatter offers coordination-free Frequency Division Multiple Access (FDMA) that effortlessly scales to thousands of concurrent tags. The readers were built on commodity radars and the tags were prototyped on PCB. The trace-driven evaluation demonstrates concurrent communication of 1100 tags with the BER < 1.5%, paving a pathway towards practical mmWave backscatter for everyday and anywhere use.
Publisher
Association for Computing Machinery, Inc
Issue Date
2022-06-27
Language
English
Citation

20th ACM International Conference on Mobile Systems, Applications and Services, MobiSys 2022, pp.316 - 329

DOI
10.1145/3498361.3538924
URI
http://hdl.handle.net/10203/298138
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0