Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks

Cited 60 time in webofscience Cited 0 time in scopus
  • Hit : 119
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Jeonyoonko
dc.contributor.authorStein, Itai Y.ko
dc.contributor.authorDevoe, Mackenzie E.ko
dc.contributor.authorLewis, Diana J.ko
dc.contributor.authorLachman, Noako
dc.contributor.authorKessler, Seth S.ko
dc.contributor.authorBuschhorn, Samuel T.ko
dc.contributor.authorWardle, Brian L.ko
dc.date.accessioned2022-06-21T06:00:34Z-
dc.date.available2022-06-21T06:00:34Z-
dc.date.created2022-06-21-
dc.date.issued2015-02-
dc.identifier.citationAPPLIED PHYSICS LETTERS, v.106, no.5-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/10203/296994-
dc.description.abstractHere, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10x with anisotropies exceeding 40%. Testing at elevated temperatures demonstrates that the aligned CNT networks have a negative temperature coefficient of resistance, and application of the fluctuation induced tunneling model leads to an activation energy of approximate to 14 meV for electron tunneling at the CNT-CNT junctions. Since the tunneling activation energy is shown to be independent of both CNT length and orientation, the variation in electron transport is attributed to the number of CNT-CNT junctions an electron must tunnel through during its percolated path, which is proportional to the morphology of the aligned CNT network. (C) 2015 AIP Publishing LLC.-
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.titleImpact of carbon nanotube length on electron transport in aligned carbon nanotube networks-
dc.typeArticle-
dc.identifier.wosid000349611800056-
dc.identifier.scopusid2-s2.0-84923899881-
dc.type.rimsART-
dc.citation.volume106-
dc.citation.issue5-
dc.citation.publicationnameAPPLIED PHYSICS LETTERS-
dc.identifier.doi10.1063/1.4907608-
dc.contributor.localauthorLee, Jeonyoon-
dc.contributor.nonIdAuthorStein, Itai Y.-
dc.contributor.nonIdAuthorDevoe, Mackenzie E.-
dc.contributor.nonIdAuthorLewis, Diana J.-
dc.contributor.nonIdAuthorLachman, Noa-
dc.contributor.nonIdAuthorKessler, Seth S.-
dc.contributor.nonIdAuthorBuschhorn, Samuel T.-
dc.contributor.nonIdAuthorWardle, Brian L.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusINDUCED TUNNELING CONDUCTION-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusARRAYS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusTRANSISTORS-
dc.subject.keywordPlusMORPHOLOGY-
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 60 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0