Risk-based uncertainty assessment to identify key sustainability hurdles for emerging CO2 utilization technologies

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 144
  • Download : 0
The development of carbon dioxide utilization (CDU) technologies is heavily influenced by policy priorities such as access to renewable energy resources and the country's economic structure. At the same time, most conversion-based CDU technologies are early-stage technologies characterized by significant uncertainties due to a nascent knowledgebase and limited available data. Consequently, identifying major sustainability hurdles and hotspots is crucial in ensuring effective allocations of R&D resources in technology upgrading and upscaling. In this study, we formulate the task of identifying sustainability hurdles as assessing and ranking key sources of risk that influence whether a given CDU technology is sustainable or not. To this end, we propose a novel methodology for risk-based uncertainty assessment through classification based on stakeholder-set sustainability decision rules. Risk is subsequently quantified by comparing the class likelihoods. For multiple sustainability criteria scenarios, additional stakeholder input in the form of joint conditional probabilities is implemented in the decision rules. We demonstrate the methodology by applying it to the CO2 hydrogenation to formic acid process employing heterogeneous Ru/bpyTN-30-CTF catalysts, being developed as part of the ongoing Carbon-to-X R&D initiative in South Korea. The proposed methodology is most applicable to CDU technologies with TRLs between 3 and 5 in which the core utilization concepts have already been experimentally validated and the conceptual design process has started.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2022-06
Language
English
Article Type
Article
Citation

GREEN CHEMISTRY, v.24, no.11, pp.4588 - 4605

ISSN
1463-9262
DOI
10.1039/d2gc00514j
URI
http://hdl.handle.net/10203/296943
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0