Deep-Learning for Breaking the Trapping Sets in Low-Density Parity-Check Codes

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 152
  • Download : 0
In the low-error rate regime, message-passing (MP) decoding for low-density parity-check (LDPC) codes is known to have performance degradation due to trapping sets (TSs), which often limits the use of LDPC codes for applications with low target error rates like storage devices. This work proposes a novel deep-learning based decoding algorithm which is tailored for breaking TSs. In particular, when MP decoding fails due to TSs, there exist pairs of unsatisfied check nodes (CNs) which are connected through paths only with error variable nodes (VNs), i.e., VNs with erroneous hard-decision results. The proposed algorithm efficiently identifies the paths with error VNs between unsatisfied CNs with the aid of deep-learning techniques. Then, the decoding failures are resolved by repeating the MP decoding after re-initializing the channel outputs for the error VNs in the identified paths. In addition, by analyzing the behaviors of the deep-learning based algorithm, we propose a low-complexity algorithm, called adaptive-error-path (AEP) detector. Simulation results show that the proposed algorithms efficiently break the TSs and significantly improve the error-floor performance in the low error-rate regime.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2022-05
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON COMMUNICATIONS, v.70, no.5, pp.2909 - 2923

ISSN
0090-6778
DOI
10.1109/TCOMM.2022.3157314
URI
http://hdl.handle.net/10203/296809
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0