Triphasic Metal Oxide Photocatalyst for Reaction Site-Specific Production of Hydrogen Peroxide from Oxygen Reduction and Water Oxidation

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 42
  • Download : 0
The search for photocatalysts allowing the highly active, selective, and stable conversion of molecular oxygen into hydrogen peroxide is of worldwide interest. Here, the authors report the efficient conversion of O-2 into H2O2 with approximate to 100% selectivity and stable cycle stability by a triphasic metal oxide photocatalyst with a cobalt hydroxide carbonate nanosheet phase for water oxidation as well as iron oxide and titanium oxide phases of a core-shell morphology for charge transfer and oxygen reduction, denoted as CFT. The different surface energies of 0.78 (anatase) and 0.93 J m(-2) (rutile) for titanium oxide and 1.39 J m(-2) for iron oxide result in a core-shell morphology. The band gaps for iron oxide (2.02 eV), titanium oxide (approximate to 3 eV), and cobalt hydroxide carbonate (3.80 eV) sites reveal that the CFT photocatalyst allows visible-to-UV light absorption. The O-18(2) isotope-labeling experiments prove that the core-shell structure promotes hole transfer toward the water oxidation site. Additionally, the hole-induced H2O2 decomposition at the oxygen reduction site is efficiently hindered. Moreover, the photogenerated electrons transfer toward the oxygen reduction site to produce H2O2 from O-2 with approximate to 10-fold higher activity than those by conventional single- or dual-phase photocatalysts, while giving robust cycle stability.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2022-05
Language
English
Article Type
Article
Citation

ADVANCED ENERGY MATERIALS, v.12, no.18

ISSN
1614-6832
DOI
10.1002/aenm.202104052
URI
http://hdl.handle.net/10203/296576
Appears in Collection
MS-Journal Papers(저널논문)CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0