Dimeric architecture of maltodextrin glucosidase (MalZ) provides insights into the substrate recognition and hydrolysis mechanism

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 194
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorAhn, Woo-Chanko
dc.contributor.authorAn, Yanko
dc.contributor.authorSong, Kyung-Moko
dc.contributor.authorPark, Kwang-Hyunko
dc.contributor.authorLee, Su-jinko
dc.contributor.authorOh, Byung-Hako
dc.contributor.authorPark, Jong-Taeko
dc.contributor.authorWoo, Eui-Jeonko
dc.date.accessioned2022-04-15T06:48:10Z-
dc.date.available2022-04-15T06:48:10Z-
dc.date.created2022-04-04-
dc.date.created2022-04-04-
dc.date.created2022-04-04-
dc.date.created2022-04-04-
dc.date.issued2022-01-
dc.identifier.citationBIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, v.586, pp.49 - 54-
dc.identifier.issn0006-291X-
dc.identifier.urihttp://hdl.handle.net/10203/294801-
dc.description.abstractMaltodextrin glucosidase (MalZ) is a key enzyme in the maltose utilization pathway in Escherichia coli that liberates glucose from the reducing end of the short malto-oligosaccharides. Unlike other enzymes in the GH13_21 subfamily, the hydrolytic activity of MalZ is limited to maltodextrin rather than long starch substrates, forming various transglycosylation products in alpha-1,3, alpha-1,4 or alpha-1,6 linkages. The mechanism for the substrate binding and hydrolysis of this enzyme is not well understood yet. Here, we present the dimeric crystal structure of MalZ, with the N-domain generating a unique substrate binding groove. The N-domain bears CBM34 architecture and forms a part of the active site in the catalytic domain of the adjacent molecule. The groove found between the N-domain and catalytic domain from the adjacent molecule, shapes active sites suitable for short malto-oligosaccharides, but hinders long stretches of oligosaccharides. The conserved residue of E44 protrudes at subsite +2, elucidating the hydrolysis pattern of the substrate by the glucose unit from the reducing end. The structural analysis provides a molecular basis for the substrate specificity and the enzymatic property, and has potential industrial application for protein engineering. (C) 2021 The Authors. Published by Elsevier Inc.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleDimeric architecture of maltodextrin glucosidase (MalZ) provides insights into the substrate recognition and hydrolysis mechanism-
dc.typeArticle-
dc.identifier.wosid000768269900006-
dc.identifier.scopusid2-s2.0-85119510603-
dc.type.rimsART-
dc.citation.volume586-
dc.citation.beginningpage49-
dc.citation.endingpage54-
dc.citation.publicationnameBIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS-
dc.identifier.doi10.1016/j.bbrc.2021.11.070-
dc.contributor.localauthorOh, Byung-Ha-
dc.contributor.nonIdAuthorAn, Yan-
dc.contributor.nonIdAuthorSong, Kyung-Mo-
dc.contributor.nonIdAuthorPark, Kwang-Hyun-
dc.contributor.nonIdAuthorLee, Su-jin-
dc.contributor.nonIdAuthorPark, Jong-Tae-
dc.contributor.nonIdAuthorWoo, Eui-Jeon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorMaltodextrin glucosidase-
dc.subject.keywordAuthorMalZ-
dc.subject.keywordAuthorDimerization-
dc.subject.keywordAuthorCrystal structure-
dc.subject.keywordPlusESCHERICHIA-COLI-
dc.subject.keywordPlusAMYLASE-
dc.subject.keywordPlusSUBFAMILIES-
dc.subject.keywordPlusMETABOLISM-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusENZYME-
dc.subject.keywordPlusGENE-
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0