PIGNet: a physics-informed deep learning model toward generalized drug-target interaction predictions

Cited 57 time in webofscience Cited 0 time in scopus
  • Hit : 226
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorMoon, Seokhyunko
dc.contributor.authorZhung, Wonhoko
dc.contributor.authorYang, Soojungko
dc.contributor.authorLim, Jaechangko
dc.contributor.authorKim, Woo Younko
dc.date.accessioned2022-04-13T06:54:20Z-
dc.date.available2022-04-13T06:54:20Z-
dc.date.created2022-04-04-
dc.date.created2022-04-04-
dc.date.created2022-04-04-
dc.date.created2022-04-04-
dc.date.created2022-04-04-
dc.date.created2022-04-04-
dc.date.issued2022-04-
dc.identifier.citationCHEMICAL SCIENCE, v.13, no.13, pp.3661 - 3673-
dc.identifier.issn2041-6520-
dc.identifier.urihttp://hdl.handle.net/10203/292614-
dc.description.abstractRecently, deep neural network (DNN)-based drug-target interaction (DTI) models were highlighted for their high accuracy with affordable computational costs. Yet, the models' insufficient generalization remains a challenging problem in the practice of in silico drug discovery. We propose two key strategies to enhance generalization in the DTI model. The first is to predict the atom-atom pairwise interactions via physics-informed equations parameterized with neural networks and provides the total binding affinity of a protein-ligand complex as their sum. We further improved the model generalization by augmenting a broader range of binding poses and ligands to training data. We validated our model, PIGNet, in the comparative assessment of scoring functions (CASF) 2016, demonstrating the outperforming docking and screening powers than previous methods. Our physics-informing strategy also enables the interpretation of predicted affinities by visualizing the contribution of ligand substructures, providing insights for further ligand optimization.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titlePIGNet: a physics-informed deep learning model toward generalized drug-target interaction predictions-
dc.typeArticle-
dc.identifier.wosid000766242700001-
dc.identifier.scopusid2-s2.0-85126759249-
dc.type.rimsART-
dc.citation.volume13-
dc.citation.issue13-
dc.citation.beginningpage3661-
dc.citation.endingpage3673-
dc.citation.publicationnameCHEMICAL SCIENCE-
dc.identifier.doi10.1039/d1sc06946b-
dc.contributor.localauthorKim, Woo Youn-
dc.contributor.nonIdAuthorYang, Soojung-
dc.contributor.nonIdAuthorLim, Jaechang-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusEMPIRICAL SCORING FUNCTIONS-
dc.subject.keywordPlusFREE-ENERGY CALCULATIONS-
dc.subject.keywordPlusPROTEIN-LIGAND DOCKING-
dc.subject.keywordPlusNEURAL-NETWORK-
dc.subject.keywordPlusCD-HIT-
dc.subject.keywordPlusAFFINITY-
dc.subject.keywordPlusBINDING-
dc.subject.keywordPlusVALIDATION-
dc.subject.keywordPlusACCURATE-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 57 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0