Low temperature CO2 conversion facilitated by the preserved morphology of metal oxide-perovskite composite

Cited 17 time in webofscience Cited 0 time in scopus
  • Hit : 260
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Minbeomko
dc.contributor.authorKim, Yikyeomko
dc.contributor.authorLim, Hyun Sukko
dc.contributor.authorJo, Ayeongko
dc.contributor.authorKang, Dohyungko
dc.contributor.authorLee, Jae Wooko
dc.date.accessioned2022-04-13T06:44:09Z-
dc.date.available2022-04-13T06:44:09Z-
dc.date.created2022-02-26-
dc.date.created2022-02-26-
dc.date.created2022-02-26-
dc.date.created2022-02-26-
dc.date.created2022-02-26-
dc.date.created2022-02-26-
dc.date.created2022-02-26-
dc.date.issued2022-06-
dc.identifier.citationCHEMICAL ENGINEERING JOURNAL, v.437, no.1, pp.135151-
dc.identifier.issn1385-8947-
dc.identifier.urihttp://hdl.handle.net/10203/292529-
dc.description.abstractThis work addresses the effect of incorporating a small portion of LaFeO3 into Fe2O3 on CO2 splitting in reverse water-gas shift chemical looping. Bare Fe2O3 suffers deactivation due to the structural change from sintering and agglomeration as the reaction progresses. The applied LaFeO3 perovskite acts as a sintering barrier between metal oxides, blocking the transport of metallic cations between adjacent particles and alleviating the Kirkendall effect by changing the direction of oxide growth. As a result, the structural deformation can be prevented, allowing sustainable CO2 conversion. In addition, the electrical conductivity of the particles is increased with the addition of the perovskite, and the conduction of the oxygen anions is improved accordingly. Therefore, Fe2O3-LaFeO3 demonstrates both enhanced CO yield and stability at the same time. It presents the highest CO yield (12.1 mmol/gcat) and CO production rate (605 μmol/gcat/min) for 50 redox cycles reported to date at 750 K.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.titleLow temperature CO2 conversion facilitated by the preserved morphology of metal oxide-perovskite composite-
dc.typeArticle-
dc.identifier.wosid000779632900003-
dc.identifier.scopusid2-s2.0-85125853779-
dc.type.rimsART-
dc.citation.volume437-
dc.citation.issue1-
dc.citation.beginningpage135151-
dc.citation.publicationnameCHEMICAL ENGINEERING JOURNAL-
dc.identifier.doi10.1016/j.cej.2022.135151-
dc.contributor.localauthorLee, Jae Woo-
dc.contributor.nonIdAuthorJo, Ayeong-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorReverse water-gas shift chemical looping-
dc.subject.keywordAuthorOxygen carrier-
dc.subject.keywordAuthorMetal oxide-
dc.subject.keywordAuthorPerovskite-
dc.subject.keywordAuthorKirkendall effect-
dc.subject.keywordPlusLANTHANUM MANGANITE PEROVSKITES-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusIRON-OXIDE-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordPlusMETHANE-
dc.subject.keywordPlusFE2O3-
dc.subject.keywordPlusFUEL-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusPHOTOREDUCTION-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0