Investigation of the Effect of 3D Meniscus Geometry on Fluid Dynamics and Crystallization via In Situ Optical Microscopy-Assisted Mathematical Modeling

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 436
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Jeong-Chanko
dc.contributor.authorSeo, Hyejiko
dc.contributor.authorLee, Minhoko
dc.contributor.authorKim, Dongjaeko
dc.contributor.authorLee, Hyeon Seokko
dc.contributor.authorPark, Hyunminko
dc.contributor.authorBall, Nathanielko
dc.contributor.authorWoo, Junheeko
dc.contributor.authorKim, Su Yeongko
dc.contributor.authorNam, Jaewookko
dc.contributor.authorPark, Steveko
dc.date.accessioned2022-01-14T06:40:45Z-
dc.date.available2022-01-14T06:40:45Z-
dc.date.created2021-11-09-
dc.date.created2021-11-09-
dc.date.created2021-11-09-
dc.date.issued2022-01-
dc.identifier.citationADVANCED MATERIALS, v.34, no.1-
dc.identifier.issn0935-9648-
dc.identifier.urihttp://hdl.handle.net/10203/291790-
dc.description.abstractSolution-based thin-film solidification is a complex process involving various transport phenomena that are intricately dependent on multiple experimental parameters. The difficulty of analyzing this process experimentally or conducting exact numerical simulation make it challenging to understand, predict, and control the solidification process. In this work, a simple and effective technique to analyze the thin-film solidification process during solution shearing, based on 3D geometrical model of the meniscus, is proposed. The 3D meniscus geometry, which changes depending on the experimental parameters, is attained using high-speed side-view and top-view in situ microscopy. Thereafter, mass and momentum transport mathematical models are applied to obtain numerical solutions of transport phenomena within the meniscus. Utilizing these results, the underlying mechanism of dendritic growth of small molecule organic semiconductor is elucidated, which has previously been unknown. The 3D meniscus modeling is particularly important for this analysis, as dendrite formation is strongly dependent on the meniscus geometry near the contact line and mass transport variation perpendicular to the coating direction. This technique enables the study of complex relationship between experimental parameters and solidification process, which is widely applicable to various materials and coating systems; whereby, better understanding of thin-film growth and device performance optimization is possible.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleInvestigation of the Effect of 3D Meniscus Geometry on Fluid Dynamics and Crystallization via In Situ Optical Microscopy-Assisted Mathematical Modeling-
dc.typeArticle-
dc.identifier.wosid000709221700001-
dc.identifier.scopusid2-s2.0-85117414395-
dc.type.rimsART-
dc.citation.volume34-
dc.citation.issue1-
dc.citation.publicationnameADVANCED MATERIALS-
dc.identifier.doi10.1002/adma.202105035-
dc.contributor.localauthorPark, Steve-
dc.contributor.nonIdAuthorSeo, Hyeji-
dc.contributor.nonIdAuthorLee, Minho-
dc.contributor.nonIdAuthorKim, Dongjae-
dc.contributor.nonIdAuthorLee, Hyeon Seok-
dc.contributor.nonIdAuthorBall, Nathaniel-
dc.contributor.nonIdAuthorWoo, Junhee-
dc.contributor.nonIdAuthorNam, Jaewook-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorcrystallization-
dc.subject.keywordAuthorfluid dynamics-
dc.subject.keywordAuthorin situ microscopy-
dc.subject.keywordAuthormathematical modeling-
dc.subject.keywordAuthormeniscus-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusLARGE-AREA-
dc.subject.keywordPlusPENTACENE-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0