Controlling spin-orbit coupling strength of bulk transition metal dichalcogenide semiconductors

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 252
  • Download : 18
DC FieldValueLanguage
dc.contributor.authorLee, Yeonghoonko
dc.contributor.authorEu, Pilsunko
dc.contributor.authorLim, Chan-youngko
dc.contributor.authorCha, Jaehunko
dc.contributor.authorKim, Sunghunko
dc.contributor.authorDenlinger, Jonathan D.ko
dc.contributor.authorKim, Yeong Kwanko
dc.date.accessioned2021-11-26T06:40:58Z-
dc.date.available2021-11-26T06:40:58Z-
dc.date.created2021-06-30-
dc.date.created2021-06-30-
dc.date.created2021-06-30-
dc.date.created2021-06-30-
dc.date.created2021-06-30-
dc.date.created2021-06-30-
dc.date.created2021-06-30-
dc.date.created2021-06-30-
dc.date.created2021-06-30-
dc.date.created2021-06-30-
dc.date.issued2021-10-
dc.identifier.citationCURRENT APPLIED PHYSICS, v.30, pp.4 - 7-
dc.identifier.issn1567-1739-
dc.identifier.urihttp://hdl.handle.net/10203/289512-
dc.description.abstractTransition metal dichalcogenide (TMD) semiconductors are attracting much attention in research regarding device physics based on their unique properties that can be utilized in spintronics and valleytronics. Although current studies concentrate on the monolayer form due to the explicitly broken inversion symmetry and the direct band gap, bulk materials also hold the capability of carrying spin and valley current. In this study, we report the methodology to continuously control the spin-orbit coupling (SOC) strength of bulk TMDs Mo1-xWxSe2 by changing the atomic ratio between Mo and W. The results show the size of band splitting at the K valley the measure of the coupling strength is linearly proportional to the atomic ratio of Mo and W. Our results thus demonstrate how to precisely tune the SOC coupling strength, and the collected information of which can serve as a reference for future applications of bulk TMDs.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleControlling spin-orbit coupling strength of bulk transition metal dichalcogenide semiconductors-
dc.typeArticle-
dc.identifier.wosid000735613300002-
dc.identifier.scopusid2-s2.0-85104409885-
dc.type.rimsART-
dc.citation.volume30-
dc.citation.beginningpage4-
dc.citation.endingpage7-
dc.citation.publicationnameCURRENT APPLIED PHYSICS-
dc.identifier.doi10.1016/j.cap.2021.03.008-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.identifier.kciidART002773680-
dc.contributor.localauthorKim, Yeong Kwan-
dc.contributor.nonIdAuthorEu, Pilsun-
dc.contributor.nonIdAuthorKim, Sunghun-
dc.contributor.nonIdAuthorDenlinger, Jonathan D.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorTransition metal dichalcogenide semiconductorSpintronicsValleytronicsSpin-orbit couplingAngle-resolved photoemission spectroscopy-
dc.subject.keywordPlusELECTRONIC-STRUCTUREVALLEY POLARIZATIONMOS2-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0