Neural Network Physically Unclonable Function: A Trainable Physically Unclonable Function System with Unassailability against Deep Learning Attacks Using Memristor Array

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 154
  • Download : 0
The dissemination of edge devices drives new requirements for security primitives for privacy protection and chip authentication. Memristors are promising entropy sources for realizing hardware-based security primitives due to their intrinsic randomness and stochastic properties. With the adoption of memristors among several technologies that meet essential requirements, the neural network physically unclonable function (NNPUF) is proposed, a novel PUF design that takes advantage of deep learning algorithms. The proposed design integrated with the memristor array can be constructed easily because the system does not depend on write operation accuracy. To contemplate a nondifferentiable module during training, an original concept of loss called PUF loss is devised. Iterations of weight update with the loss function bring about optimal NNPUF performance. It is shown that the design achieves a near-ideal 50% average value for security metrics, including uniformity, diffuseness, and uniqueness. This means that the NNPUF satisfies practical quality standards for security primitives by training with PUF loss. It is also demonstrated that the NNPUF response has an unassailable resistance against deep learning-based modeling attacks, which is verified by the near-50% prediction model accuracy.
Publisher
WILEY
Issue Date
2021-11
Language
English
Article Type
Article
Citation

ADVANCED INTELLIGENT SYSTEMS, v.3, no.11

ISSN
2640-4567
DOI
10.1002/aisy.202100111
URI
http://hdl.handle.net/10203/289511
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0