Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction

Cited 54 time in webofscience Cited 0 time in scopus
  • Hit : 981
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJeong, Gyoung Hwako
dc.contributor.authorTan, Ying Chuanko
dc.contributor.authorSong, Jun Taeko
dc.contributor.authorLee, Gil-Yongko
dc.contributor.authorLee, Ho Jinko
dc.contributor.authorLim, Jaewoongko
dc.contributor.authorJeong, Hu Youngko
dc.contributor.authorWon, Somiko
dc.contributor.authorOh, Jihunko
dc.contributor.authorKim, Sang Oukko
dc.date.accessioned2021-11-09T06:41:36Z-
dc.date.available2021-11-09T06:41:36Z-
dc.date.created2021-11-09-
dc.date.created2021-11-09-
dc.date.created2021-11-09-
dc.date.created2021-11-09-
dc.date.created2021-11-09-
dc.date.issued2021-12-
dc.identifier.citationCHEMICAL ENGINEERING JOURNAL, v.426-
dc.identifier.issn1385-8947-
dc.identifier.urihttp://hdl.handle.net/10203/288959-
dc.description.abstractRational design of nanoscale structures can greatly strengthen heterogeneous catalysis with the maximal utilization of active sites. Single atom catalysts (SACs) are recently emerging but a systematic design of nanostructured SAC has rarely been demonstrated yet. Here, distinct architectural structure-dependence of electrochemical CO2 reduction (CO2RR) on Ni-based SACs is presented. Starting from Ni-imidazolate coordination polymers (Ni-Im) and their supported counterparts with a carbon nanotube (CNT) and a zeolite imidazolate framework (ZIF-8), the respective derivatives, i.e. Ni-SAC, Ni-SAC-CNT, and Ni-SAC-ZIF8, are obtained after pyrolysis. The presence of substrates ultimately results in large surface porous N-doped carbon nanostructures, which facilitate the diffusion of etchants to remove undesired Ni nanoparticles effectively. The dense Ni single atomic sites contained within the nanostructure are easily accessible to CO2 reactants during CO2RR, thus promoting high utilization of active sites even at large current densities. Electro-conductive CNT substrates mediate fluent charge transfer and stimulates the intrinsic activity of catalytic sites. Consequently, operating at 400 mA cm(-2), Ni-SAC-CNT attains a high faradaic efficiency of 99% toward CO at a low overpotential of 0.24 V, equivalent to a record cathodic energetic efficiency and turnover frequency of 83.4% and 439,000 h(-1), respectively.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.titleSynthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction-
dc.typeArticle-
dc.identifier.wosid000711923400005-
dc.identifier.scopusid2-s2.0-85110325263-
dc.type.rimsART-
dc.citation.volume426-
dc.citation.publicationnameCHEMICAL ENGINEERING JOURNAL-
dc.identifier.doi10.1016/j.cej.2021.131063-
dc.contributor.localauthorOh, Jihun-
dc.contributor.localauthorKim, Sang Ouk-
dc.contributor.nonIdAuthorTan, Ying Chuan-
dc.contributor.nonIdAuthorSong, Jun Tae-
dc.contributor.nonIdAuthorLee, Ho Jin-
dc.contributor.nonIdAuthorLim, Jaewoong-
dc.contributor.nonIdAuthorJeong, Hu Young-
dc.contributor.nonIdAuthorWon, Somi-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorSingle atom catalyst-
dc.subject.keywordAuthorCO2 reduction-
dc.subject.keywordAuthorCarbon nanostructure-
dc.subject.keywordAuthorElectrochemistry-
dc.subject.keywordPlusMETAL-ORGANIC FRAMEWORKS-
dc.subject.keywordPlusELECTROCHEMICAL REDUCTION-
dc.subject.keywordPlusEFFICIENT CO2-
dc.subject.keywordPlusELECTROLYSIS-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusALKALINITY-
dc.subject.keywordPlusSITES-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 54 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0