An economically sustainable bifunctional Ni@C catalyst in a solar-to-hydrogen device employing a CIGS submodule

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 277
  • Download : 64
DC FieldValueLanguage
dc.contributor.authorNgo, Quang-Tungko
dc.contributor.authorOmelianovych, Oleksiiko
dc.contributor.authorNguyen, Van-Toanko
dc.contributor.authorAhn, Byung Taeko
dc.contributor.authorLee, Kyu-Bockko
dc.contributor.authorLee, Gyoung-Jako
dc.contributor.authorLarina, Liudmila L.ko
dc.contributor.authorChoi, Ho-Sukko
dc.date.accessioned2021-11-08T06:40:20Z-
dc.date.available2021-11-08T06:40:20Z-
dc.date.created2021-09-28-
dc.date.created2021-09-28-
dc.date.created2021-09-28-
dc.date.created2021-09-28-
dc.date.issued2021-11-
dc.identifier.citationJOURNAL OF MATERIALS CHEMISTRY A, v.9, no.42-
dc.identifier.issn2050-7488-
dc.identifier.urihttp://hdl.handle.net/10203/288911-
dc.description.abstractLow-cost Ni@C core-shell nanoparticles (NPs) were synthesized by means of the electrical explosion of wire method and were applied as a bifunctional catalyst for overall water splitting. XPS, HRTEM, and BET results revealed that the carbon shell effectively protects the metallic core from oxidation while providing a porous structure that yields a high surface area, which in turn enhances the catalytic activity. Through material analysis, we established a link between synthesis conditions and resulting morphology, electronic and crystal structure of the outer layers of Ni@C NPs. Thanks to the optimum morphology and favorable shell electronic structure, Ni@C(15%) showed superior catalytic activity. An electrolyzer based on bifunctional Ni@C(15%) required only 1.71 V of voltage to deliver 10 mA cm(-2). The overpotential for water splitting is 0.12 V lower than that for a Ni benchmark electrolyzer. A stable and scalable PV-electrolysis system for water splitting that is fully based on all-inorganic CIGS PV and Ni@C(15%) was constructed. Water splitting is driven at a high current of similar to 10 mA under the illumination of 100 mW cm(-2), corresponding to a solar-to-hydrogen (STH) efficiency of 8.14% with 11.65% efficiency of the sub-module at the operating point. The efficiency of the STH device can be increased up to 10% by increasing the operating current through a further decrease of the Ni@C(15%) catalyst overpotential by optimization of its electronic structure.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleAn economically sustainable bifunctional Ni@C catalyst in a solar-to-hydrogen device employing a CIGS submodule-
dc.typeArticle-
dc.identifier.wosid000695664300001-
dc.identifier.scopusid2-s2.0-85118770305-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue42-
dc.citation.publicationnameJOURNAL OF MATERIALS CHEMISTRY A-
dc.identifier.doi10.1039/d1ta03474j-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorAhn, Byung Tae-
dc.contributor.nonIdAuthorNgo, Quang-Tung-
dc.contributor.nonIdAuthorOmelianovych, Oleksii-
dc.contributor.nonIdAuthorNguyen, Van-Toan-
dc.contributor.nonIdAuthorLee, Kyu-Bock-
dc.contributor.nonIdAuthorLee, Gyoung-Ja-
dc.contributor.nonIdAuthorLarina, Liudmila L.-
dc.contributor.nonIdAuthorChoi, Ho-Suk-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusEVOLUTION REACTION-
dc.subject.keywordPlusDIFFERENT MORPHOLOGIES-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusFILM-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0