Press'Em: Simulating Varying Button Tactility via FDVV Models

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 107
  • Download : 0
Push-buttons provide rich haptic feedback during a press via mechanical structures. While different buttons have varying haptic qualities, few works have attempted to dynamically render such tactility, which limits designers from freely exploring buttons' haptic design. We extend the typical force-displacement (FD) model with vibration (V) and velocity-dependence characteristics (V) to form a novel FDVV model. We then introduce Press'Em, a 3D-printed prototype capable of simulating button tactility based on FDVV models. To drive Press'Em, an end-to-end simulation pipeline is presented that covers (1) capturing any physical buttons, (2) controlling the actuation signals, and (3) simulating the tactility. Our system can go beyond replicating existing buttons to enable designers to emulate and test non-existent ones with desired haptic properties. Press'Em aims to be a tool for future research to better understand and iterate over button designs.
Publisher
ASSOC COMPUTING MACHINERY
Issue Date
2020-04
Language
English
Citation

ACM CHI Conference on Human Factors in Computing Systems (CHI)

DOI
10.1145/3334480.3383161
URI
http://hdl.handle.net/10203/288304
Appears in Collection
GCT-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0