Surface chemistry of hot electron and metal-oxide interfaces

Cited 16 time in webofscience Cited 0 time in scopus
  • Hit : 201
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Si Wooko
dc.contributor.authorLee, Hyunhwako
dc.contributor.authorPark, Yujinko
dc.contributor.authorKim, Heeyoungko
dc.contributor.authorSomorjai, Gabor A.ko
dc.contributor.authorPark, Jeong Youngko
dc.date.accessioned2021-09-14T06:30:10Z-
dc.date.available2021-09-14T06:30:10Z-
dc.date.created2021-09-14-
dc.date.created2021-09-14-
dc.date.issued2021-08-
dc.identifier.citationSURFACE SCIENCE REPORTS, v.76, no.3-
dc.identifier.issn0167-5729-
dc.identifier.urihttp://hdl.handle.net/10203/287775-
dc.description.abstractFundamental mechanisms for energy conversion and dissipation on surfaces and at interfaces have been significant issues in the community of surface science. Electronic excitation in exothermic chemical reactions or photon absorption involves the generation of energetic or hot electrons that are not in thermal equilibrium via non-adiabatic electronic excitation. A number of experimental and theoretical studies have demonstrated the influence of excited hot electrons on atomic and molecular processes, and it is a key moderator in the surface energy conversion process. The charge transfer through the metal oxide interfaces has a significant impact on catalytic performance in mixed metal-oxide catalysts. In order to understand the influence of hot electrons and metal-oxide interfaces on the surface reactions, various detection schemes of exoelectron detection, including metal-insulator-metal and metal semiconductor Schottky diodes, have been developed. Catalysts coupled with surface plasmons exhibit peculiar catalytic performance related to hot electron flow. In this review, we outline recent research efforts to relate hot electron flow with surface reactions occurring at metal-oxide interfaces. We report recent studies on the observation of hot electrons and the correlation between hot electrons and catalytic activity and selectivity on metallic surfaces. We show recent results from studies of surface reactions on nanocatalysts coupled with surface plasmons, where hot electron transport is the key process in energy dissipation and conversion processes. (c) 2021 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleSurface chemistry of hot electron and metal-oxide interfaces-
dc.typeArticle-
dc.identifier.wosid000691804700001-
dc.identifier.scopusid2-s2.0-85110241128-
dc.type.rimsART-
dc.citation.volume76-
dc.citation.issue3-
dc.citation.publicationnameSURFACE SCIENCE REPORTS-
dc.identifier.doi10.1016/j.surfrep.2021.100532-
dc.contributor.localauthorPark, Jeong Young-
dc.contributor.nonIdAuthorSomorjai, Gabor A.-
dc.description.isOpenAccessN-
dc.type.journalArticleReview-
dc.subject.keywordAuthorEnergy dissipation-
dc.subject.keywordAuthorNon-adiabatic electronic excitation-
dc.subject.keywordAuthorHot electrons-
dc.subject.keywordAuthorCatalytic nanodiodes-
dc.subject.keywordAuthorChemicurrent-
dc.subject.keywordAuthorSurface science-
dc.subject.keywordAuthorMetal-oxide interface-
dc.subject.keywordAuthorLocalized surface plasmon resonance-
dc.subject.keywordAuthorScanning probe microscopy-
dc.subject.keywordAuthorPhotocatalysis-
dc.subject.keywordAuthorPerovskite surface-
dc.subject.keywordPlusDRIVEN CATALYTIC-REACTIONS-
dc.subject.keywordPlusBORN-OPPENHEIMER APPROXIMATION-
dc.subject.keywordPlusHYDROGEN GENERATION-
dc.subject.keywordPlusVIBRATIONAL-EXCITATION-
dc.subject.keywordPlusSUPPORT INTERACTIONS-
dc.subject.keywordPlusPLASMON RESONANCE-
dc.subject.keywordPlusENERGY-CONVERSION-
dc.subject.keywordPlusCHARGE-CARRIERS-
dc.subject.keywordPlusSINGLE-PARTICLE-
dc.subject.keywordPlusCARBON-MONOXIDE-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0