Flash-welded ultraflat silver nanowire network for flexible organic light-emitting diode and triboelectric tactile sensor

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 222
  • Download : 0
Transparent flexible electrodes of metallic nanowire have been spotlighted to develop form factor free electronics for human-machine interfaces. However, state-of-the-art nanowire electrodes have been restricted for flexible application due to multi-stacked morphology with large protrusion and high surface roughness, which generate critical leakage current and device malfunction. Light-material interactions using board-wavelength flash lamps can be a solution for outstanding electrical and morphological properties by inducing a plasmonic welding of flexible metal nanowire. Herein, we propose flash-welded ultraflat electrode networks enabled by nanowire embedding to reduce the protrusion and surface roughness. The nanowire embedded in elastomer presented an ultra-smooth surface of Rq similar to 1.4 nm that prevents leakage current in ultrathin flexible electronics. The excellent electrical properties of ultraflat composite electrode were realized by xenon flash-induced junction welding of metal nanowire. The mechanical stability of flash-welded electrode was confirmed by sheet resistance value under cyclic bending test. Finally, ultraflat silver nanowire networks were utilized in practical application of a leakage current-free flexible optoelectronic device and a triboelectric tactile sensor. (c) 2021 Author(s).
Publisher
AIP Publishing
Issue Date
2021-06
Language
English
Article Type
Article
Citation

APL MATERIALS, v.9, no.6

ISSN
2166-532X
DOI
10.1063/5.0051431
URI
http://hdl.handle.net/10203/287754
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0