Controlled Synthesis of Metal-Organic Frameworks in Scalable Open-Porous Contactor for Maximizing Carbon Capture Efficiency

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 302
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Young Hunko
dc.contributor.authorKwon, Yongsungko
dc.contributor.authorKim, Chaehoonko
dc.contributor.authorHwang, Young-Eunko
dc.contributor.authorChoi, Minkeeko
dc.contributor.authorPark, Youinko
dc.contributor.authorJamal, Aqilko
dc.contributor.authorKoh, Dong-Yeunko
dc.date.accessioned2021-09-08T06:10:21Z-
dc.date.available2021-09-08T06:10:21Z-
dc.date.created2021-09-08-
dc.date.created2021-09-08-
dc.date.created2021-09-08-
dc.date.created2021-09-08-
dc.date.issued2021-08-
dc.identifier.citationJACS AU, v.1, no.8, pp.1198 - 1207-
dc.identifier.issn2691-3704-
dc.identifier.urihttp://hdl.handle.net/10203/287651-
dc.description.abstractMetal-organic frameworks (MOFs) are a class of microporous materials that have been highlighted with fast and selective sorption of gas molecules; however, they are at least partially unstable in the scale-up process. Here, we report a rational shaping of MOFs in a scalable architecture of fiber sorbent. The long-standing stability challenge of MOFs was resolved by using stable metal oxide precursors that are subject to controlled surface oxide dissolution-growth chemistry during the Mg-based MOF synthesis. Highly uniform MOF crystals are synthesized along with the open-porous fiber sorbents networks, showing unprecedented cyclic CO2 capacities in both flue gas and direct air capture (DAC) conditions. The same chemistry enables an in situ flow synthesis of Mg-MOF fiber sorbents, providing a scalable pathway for MOF synthesis in an inert condition with minimal handling steps. This modular approach can serve both as a reaction stage for enhanced MOF fiber sorbent synthesis and as a "process-ready" separation device.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleControlled Synthesis of Metal-Organic Frameworks in Scalable Open-Porous Contactor for Maximizing Carbon Capture Efficiency-
dc.typeArticle-
dc.identifier.scopusid2-s2.0-85122522653-
dc.type.rimsART-
dc.citation.volume1-
dc.citation.issue8-
dc.citation.beginningpage1198-
dc.citation.endingpage1207-
dc.citation.publicationnameJACS AU-
dc.identifier.doi10.1021/jacsau.1c00068-
dc.contributor.localauthorChoi, Minkee-
dc.contributor.localauthorKoh, Dong-Yeun-
dc.contributor.nonIdAuthorPark, Youin-
dc.contributor.nonIdAuthorJamal, Aqil-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthormetal-organic frameworks-
dc.subject.keywordAuthorfiber sorbents-
dc.subject.keywordAuthorcontrolled-dissolution synthesis-
dc.subject.keywordAuthorpostspinning conversion-
dc.subject.keywordAuthoramine functionalization-
dc.subject.keywordAuthorcarbon capture and storage-
dc.subject.keywordPlusHOLLOW-FIBER SORBENTS-
dc.subject.keywordPlusCO2 CAPTURE-
dc.subject.keywordPlusDIOXIDE-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusPOLY(ETHYLENEIMINE)-
dc.subject.keywordPlusADSORBENTS-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusAIR-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0