High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers

Cited 147 time in webofscience Cited 0 time in scopus
  • Hit : 179
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Jung-Inko
dc.contributor.authorKo, Younghoonko
dc.contributor.authorShin, Myoungsooko
dc.contributor.authorSong, Hyun-Konko
dc.contributor.authorChoi, Nam-Soonko
dc.contributor.authorKim, Min Gyuko
dc.contributor.authorPark, Soojinko
dc.date.accessioned2021-08-20T07:10:40Z-
dc.date.available2021-08-20T07:10:40Z-
dc.date.created2021-08-20-
dc.date.created2021-08-20-
dc.date.created2021-08-20-
dc.date.issued2015-
dc.identifier.citationENERGY & ENVIRONMENTAL SCIENCE, v.8, no.7, pp.2075 - 2084-
dc.identifier.issn1754-5692-
dc.identifier.urihttp://hdl.handle.net/10203/287328-
dc.description.abstractNanostructured Si-based materials are key building blocks for next-generation energy storage devices. To meet the requirements of practical energy storage devices, Si-based materials should exhibit high-power, low volume change, and high tap density. So far, there have been no reliable materials reported satisfying all of these requirements. Here, we report a novel Si-based multicomponent design, in which the Si core is covered with multifunctional shell layers. The synergistic coupling of Si with the multifunctional shell provides vital clues for satisfying all Si anode requirements for practical batteries. The Si-based multicomponent anode delivers a high capacity of similar to 1000 mA h g(-1), a highly stable cycling retention (similar to 65% after 1000 cycles at 1 C), an excellent rate capability (similar to 800 mA h g(-1) at 10 C), and a remarkably suppressed volume expansion (12% after 100 cycles). Our synthetic process is simple, low-cost, and safe, facilitating new methods for developing electrode materials for practical energy storage.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleHigh-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers-
dc.typeArticle-
dc.identifier.wosid000357541300020-
dc.identifier.scopusid2-s2.0-84936857116-
dc.type.rimsART-
dc.citation.volume8-
dc.citation.issue7-
dc.citation.beginningpage2075-
dc.citation.endingpage2084-
dc.citation.publicationnameENERGY & ENVIRONMENTAL SCIENCE-
dc.identifier.doi10.1039/c5ee01493j-
dc.contributor.localauthorChoi, Nam-Soon-
dc.contributor.nonIdAuthorLee, Jung-In-
dc.contributor.nonIdAuthorKo, Younghoon-
dc.contributor.nonIdAuthorShin, Myoungsoo-
dc.contributor.nonIdAuthorSong, Hyun-Kon-
dc.contributor.nonIdAuthorKim, Min Gyu-
dc.contributor.nonIdAuthorPark, Soojin-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusFLUOROETHYLENE CARBONATE-
dc.subject.keywordPlusELECTRODE MATERIALS-
dc.subject.keywordPlusSTRUCTURAL-CHANGES-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusLITHIATION-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusTEMPERATURE-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 147 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0