Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries

Cited 118 time in webofscience Cited 0 time in scopus
  • Hit : 732
  • Download : 0
Solid electrolyte interphases generated using electrolyte additives are key for anode-electrolyte interactions and for enhancing the lithium-ion battery lifespan. Classical solid electrolyte interphase additives, such as vinylene carbonate and fluoroethylene carbonate, have limited potential for simultaneously achieving a long lifespan and fast chargeability in high-energy-density lithium-ion batteries (LIBs). Here we report a next-generation synthetic additive approach that allows to form a highly stable electrode-electrolyte interface architecture from fluorinated and silylated electrolyte additives; it endures the lithiation-induced volume expansion of Si-embedded anodes and provides ion channels for facile Li-ion transport while protecting the Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes. The retrosynthetically designed solid electrolyte interphase-forming additives, 5-methyl-4-((trifluoromethoxy)methyl)-1,3-dioxol-2-one and 5-methyl-4-((trimethylsilyloxy)methyl)-1,3-dioxol-2-one, provide spatial flexibility to the vinylene carbonate-derived solid electrolyte interphase via polymeric propagation with the vinyl group of vinylene carbonate. The interface architecture from the synthesized vinylene carbonate-type additive enables high-energy-density LIBs with 81.5% capacity retention after 400 cycles at 1C and fast charging capability (1.9% capacity fading after 100 cycles at 3C). Interface architecture generated from electrolyte additives is a key element for high performance lithium-ion batteries. Here, the authors present that a stable and spatially deformable solid electrolyte interphase mitigates interfacial degradation of Si-embedded anodes and Ni-rich cathodes.
Publisher
NATURE RESEARCH
Issue Date
2021-02
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.12, no.1

ISSN
2041-1723
DOI
10.1038/s41467-021-21106-6
URI
http://hdl.handle.net/10203/287261
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 118 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0