The SARS-CoV-2 RNA interactome

Cited 81 time in webofscience Cited 0 time in scopus
  • Hit : 234
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Sungyulko
dc.contributor.authorLee, Young-sukko
dc.contributor.authorChoi, Yeonko
dc.contributor.authorSon, Ahyeonko
dc.contributor.authorPark, Youngranko
dc.contributor.authorLee, Kyung-Minko
dc.contributor.authorKim, Jeesooko
dc.contributor.authorKim, Jong-Seoko
dc.contributor.authorKim, V. Narryko
dc.date.accessioned2021-07-29T03:10:09Z-
dc.date.available2021-07-29T03:10:09Z-
dc.date.created2021-07-29-
dc.date.created2021-07-29-
dc.date.issued2021-04-
dc.identifier.citationMOLECULAR CELL, v.81, no.13, pp.2838 - +-
dc.identifier.issn1097-2765-
dc.identifier.urihttp://hdl.handle.net/10203/286898-
dc.description.abstractSARS-CoV-2 is an RNA virus whose success as a pathogen relies on its abilities to repurpose host RNA -binding proteins (RBPs) and to evade antiviral RBPs. To uncover the SARS-CoV-2 RNA interactome, we here develop a robust ribonucleoprotein (RNP) capture protocol and identify 109 host factors that directly bind to SARS-CoV-2 RNAs. Applying RNP capture on another coronavirus, HCoV-OC43, revealed evolutionarily conserved interactions between coronaviral RNAs and host proteins. Transcriptome analyses and knockdown experiments delineated 17 antiviral RBPs, including ZC3HAV1, TRIM25, PARP12, and SHFL, and 8 pro viral RBPs, such as EIF3D and CSDE1, which are responsible for co-opting multiple steps of the mRNA life cycle. This also led to the identification of LARP1, a downstream target of the mTOR signaling pathway, as an antiviral host factor that interacts with the SARS-CoV-2 RNAs. Overall, this study provides a comprehensive list of RBPs regulating coronaviral replication and opens new avenues for therapeutic interventions.-
dc.languageEnglish-
dc.publisherCELL PRESS-
dc.titleThe SARS-CoV-2 RNA interactome-
dc.typeArticle-
dc.identifier.wosid000671130000003-
dc.identifier.scopusid2-s2.0-85105795237-
dc.type.rimsART-
dc.citation.volume81-
dc.citation.issue13-
dc.citation.beginningpage2838-
dc.citation.endingpage+-
dc.citation.publicationnameMOLECULAR CELL-
dc.identifier.doi10.1016/j.molcel.2021.04.022-
dc.contributor.localauthorLee, Young-suk-
dc.contributor.nonIdAuthorLee, Sungyul-
dc.contributor.nonIdAuthorChoi, Yeon-
dc.contributor.nonIdAuthorSon, Ahyeon-
dc.contributor.nonIdAuthorPark, Youngran-
dc.contributor.nonIdAuthorLee, Kyung-Min-
dc.contributor.nonIdAuthorKim, Jeesoo-
dc.contributor.nonIdAuthorKim, Jong-Seo-
dc.contributor.nonIdAuthorKim, V. Narry-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusGENE-EXPRESSION-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusCORONAVIRUS-
dc.subject.keywordPlusTRANSLATION-
dc.subject.keywordPlusBINDING-
dc.subject.keywordPlusINTERFERON-
dc.subject.keywordPlusNSP9-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusREPLICATION-
dc.subject.keywordPlusMODULATION-
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 81 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0