Ionic contrast across a lipid membrane for Debye length extension: towards an ultimate bioelectronic transducer

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 704
  • Download : 123
Despite technological advances in biomolecule detections, evaluation of molecular interactions via potentiometric devices under ion-enriched solutions has remained a long-standing problem. To avoid severe performance degradation of bioelectronics by ionic screening effects, we cover probe surfaces of field effect transistors with a single film of the supported lipid bilayer, and realize respectable potentiometric signals from receptor-ligand bindings irrespective of ionic strength of bulky solutions by placing an ion-free water layer underneath the supported lipid bilayer. High-energy X-ray reflectometry together with the circuit analysis and molecular dynamics simulation discovered biochemical findings that effective electrical signals dominantly originated from the sub-nanoscale conformational change of lipids in the course of receptor-ligand bindings. Beyond thorough analysis on the underlying mechanism at the molecular level, the proposed supported lipid bilayer-field effect transistor platform ensures the world-record level of sensitivity in molecular detection with excellent reproducibility regardless of molecular charges and environmental ionic conditions. The design of bioelectronic devices that enables accurate detection of biomolecules in ionic solutions at physiologically-relevant concentrations remains a challenge. Here, the authors report a ion-impermeable supported lipid bilayer-assisted field-effect transistor platform for biomolecule detection.
Publisher
NATURE RESEARCH
Issue Date
2021-06
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.12, no.1

ISSN
2041-1723
DOI
10.1038/s41467-021-24122-8
URI
http://hdl.handle.net/10203/286750
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
120902.pdf(2.44 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0