Global aridity changes due to differences in surface energy and water balance between 1.5 degrees C and 2 degrees C warming

Cited 16 time in webofscience Cited 0 time in scopus
  • Hit : 178
  • Download : 0
Increased aridity and drought risks are significant global concerns. However, there are few comprehensive studies on the related risks with regard to the differences between relatively weak levels of warming, including the recent targets of the United Nations Framework Convention on Climate Change (UNFCCC) of 1.5 degrees C or 2 degrees C. The present study investigates the impacts of 1.5 degrees C and 2 degrees C warming on aridification and their non-linearity based on the relationship between available water and energy at the Earth's terrestrial surface. Large multi-model ensembles with a 4000-model-year in total are sourced from the Half a degree Additional warming, Prognosis, and Projected Impacts (HAPPI) project. Results demonstrate that 2 degrees C warming results in more frequent dry states in the Amazon Basin, western Europe, and southern Africa, and a limited warming to 1.5 degrees C will mitigate aridification and increase the frequency of extreme dry-year in these regions. In the Mediterranean region, a significant acceleration of aridification is found from the 1.5 degrees C to 2 degrees C warming projections, which indicates a need to limit the warming by 1.5 degrees C. A substantial portion of Asia is projected to become increasingly humid under both 1.5 degrees C and 2 degrees C warming scenarios. In some geographic regions, such as Australia, a strong nonlinear shift of aridification is found as 2 degrees C warming results in shift to wetter state contrast to significant increases in aridity and dry-year frequency at the weaker level of warming. The results suggest that the responses of regional precipitation to global warming cause the aridity changes, but their nonlinear behaviors along with different warming levels should be assessed carefully, in particular, to incorporate the additional 0.5 degrees C warming.
Publisher
IOP PUBLISHING LTD
Issue Date
2020-09
Language
English
Article Type
Article
Citation

ENVIRONMENTAL RESEARCH LETTERS, v.15, no.9

ISSN
1748-9326
DOI
10.1088/1748-9326/ab9db3
URI
http://hdl.handle.net/10203/286634
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0