The effects of Y pre-alloying on the in-situ dispersoids of ODS CoCrFeMnNi high-entropy alloy

Cited 24 time in webofscience Cited 0 time in scopus
  • Hit : 325
  • Download : 0
Oxide dispersion strengthened CoCrFeMnNi high-entropy alloys (ODS-HEAs) were prepared using two different powder preparation methods classified by yttrium addition strategy to investigate the effects of in-situ and ex-situ oxide dispersoid formation on the microstructure and mechanical properties. Systematic microstructural analysis was carried out by X-ray diffraction (XRD), electron backscattered diffraction (EBSD), high-resolution transmission electron microscopy (HRTEM), atom probe tomography (APT), and small-angle neutron scattering (SANS). Cryo-milled powder analysis, grain structure evolution after spark plasma sintering, dispersoid characteristics, and matrix/dispersoid interface structure analysis of the in-situ and ex-situ dispersoids within the high-entropy alloy (HEA) matrix were performed. The in-situ dispersoid formation was dominantly observed in the Y-alloyed ODS-HEA through the construction of a coherent interface relationship with complex chemical composition, leading to an increase in the Zener pinning forces on the grain boundary movement. ODS-HEA with in-situ oxide dispersoids enhanced the formation of ultrafine-grained structures with an average diameter of 330 nm at a sintering temperature of 1173 K. This study shows that the Y pre-alloying method is efficient in achieving fine coherent dispersoids with an ultrafine-grained structure, resulting in an enhancement of the tensile strength of the CoCrFeMnNi HEA. (C) 2021 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
Publisher
JOURNAL MATER SCI TECHNOL
Issue Date
2021-09
Language
English
Article Type
Article
Citation

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, v.85, pp.62 - 75

ISSN
1005-0302
DOI
10.1016/j.jmst.2020.11.081
URI
http://hdl.handle.net/10203/286544
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 24 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0