Universal effectiveness of high-depth circuits in variational eigenproblems

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 135
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Joonhoko
dc.contributor.authorKim, Jaedeokko
dc.contributor.authorRosa, Darioko
dc.date.accessioned2021-07-13T02:10:04Z-
dc.date.available2021-07-13T02:10:04Z-
dc.date.created2021-07-13-
dc.date.created2021-07-13-
dc.date.created2021-07-13-
dc.date.created2021-07-13-
dc.date.issued2021-06-
dc.identifier.citationPHYSICAL REVIEW RESEARCH, v.3, no.2-
dc.identifier.issn2643-1564-
dc.identifier.urihttp://hdl.handle.net/10203/286540-
dc.description.abstractWe explore the effectiveness of variational quantum circuits in simulating the ground states of quantum many-body Hamiltonians. We show that generic high-depth circuits, performing a sequence of layer unitaries of the same form, can accurately approximate the desired states. We demonstrate their universal success by using two Hamiltonian systems with very different properties: the transverse field Ising model and the Sachdev-Ye-Kitaev model. The energy landscape of the high-depth circuits has a proper structure for the gradient-based optimization, i.e., the presence of local extrema-near any random initial points-reaching the ground level energy. We further test the circuit's capability of replicating random quantum states by minimizing the Euclidean distance.-
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.titleUniversal effectiveness of high-depth circuits in variational eigenproblems-
dc.typeArticle-
dc.identifier.scopusid2-s2.0-85111199796-
dc.type.rimsART-
dc.citation.volume3-
dc.citation.issue2-
dc.citation.publicationnamePHYSICAL REVIEW RESEARCH-
dc.identifier.doi10.1103/PhysRevResearch.3.023203-
dc.contributor.localauthorRosa, Dario-
dc.contributor.nonIdAuthorKim, Joonho-
dc.contributor.nonIdAuthorKim, Jaedeok-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusQUANTUM-
dc.subject.keywordPlusSTATE-
Appears in Collection
RIMS Journal Papers
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0