Recent Progress in Synaptic Devices Based on 2D Materials

Cited 52 time in webofscience Cited 0 time in scopus
  • Hit : 194
  • Download : 0
Diverse synaptic plasticity with a wide range of timescales in biological synapses plays an important role in memory, learning, and various signal processing with exceptionally low power consumption. Emulating biological synaptic functions by electric devices for neuromorphic computation has been considered as a way to overcome the traditional von Neumann architecture in which separated memory and information processing units require high power consumption for their functions. Synaptic devices are expected to conduct complex signal processing such as image classification, decision-making, and pattern recognition in artificial neural networks. Among various materials and device architectures for synaptic devices, 2D materials and their van der Waals (vdW) heterostructures have been attracting tremendous attention from researchers based on their capacity to mimic unique synaptic plasticity for neuromorphic computing. Herein, the basic operations of biological synapses and physical properties of 2D materials are discussed, and then 2D materials and their vdW heterostructures for advanced synaptic operations with novel working mechanisms are reviewed. In particular, there is a focus on how to design synaptic devices with the vdW structures in terms of critical 2D materials and their limitations, providing insight into the emerging synaptic device systems and artificial neural networks with 2D materials.
Publisher
WILEY
Issue Date
2020-05
Language
English
Article Type
Article
Citation

ADVANCED INTELLIGENT SYSTEMS, v.2, no.5

ISSN
2640-4567
DOI
10.1002/aisy.201900167
URI
http://hdl.handle.net/10203/286322
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 52 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0