Cooperation between Excitation Energy Transfer and Antisynchronously Coupled Vibrations

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 258
  • Download : 0
The effects of the environment in energy transfer systems have been continuously studied for decades. Here, we investigate how the energy transfer and the emergence of vibrational correlations cooperate with each other based on simulations with a few numerically approximate mixed quantum classical (MQC) methods. By adopting a two-state system with locally coupled underdamped vibrations that are resonant with the electronic energy gap, we observe prominent energy dissipations from the electronic system to the vibrations, rehighlighting the role of underdamped vibrations as a temporal electronic energy buffer. More importantly, this energy dissipation generates specific phase relations between the two vibrations. Namely, the vibrations become anticorrelated right after the initiation of the energy transfer but then synchronized as the transfer completes. These phase relations are interpreted as a selective activation of an anticorrelated motion of the vibrations and a subsequent deactivation by thermal energy redistribution. Furthermore, we show that a single vibration simultaneously coupled to the two electronic states with opposite phases induces a completely equivalent energy transfer dynamics as the two localized vibrations. Finally, we discuss how the vibrational energy dissipation dynamics is affected by the adopted MQC approaches and warn about the increased subtlety toward properly treating dissipation effects over having reliable population dynamics.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-06
Language
English
Article Type
Article
Citation

JOURNAL OF PHYSICAL CHEMISTRY B, v.125, no.21, pp.5601 - 5610

ISSN
1520-6106
DOI
10.1021/acs.jpcb.1c01194
URI
http://hdl.handle.net/10203/286288
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0