Heat transfer and capillary performance of dual-height superhydrophilic micropost wicks

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 86
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorRyu, Seunggeolko
dc.contributor.authorLee, Wonchulko
dc.contributor.authorNam, Youngsukko
dc.date.accessioned2021-06-25T04:50:32Z-
dc.date.available2021-06-25T04:50:32Z-
dc.date.created2021-06-25-
dc.date.created2021-06-25-
dc.date.issued2014-06-
dc.identifier.citationINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, v.73, pp.438 - 444-
dc.identifier.issn0017-9310-
dc.identifier.urihttp://hdl.handle.net/10203/286225-
dc.description.abstractWe propose dual-height superhydrophilic (DHS) micropost evaporator wicks with improved heat transfer performance for thermal management applications such as micro heat pipes. The heat transfer coefficient and capillary performance are characterized with a numerical model that accounts for the finite curvatures of liquid menisci by varying solid fraction of micropost arrays from 0.18 to 0.54. The DHS wicks vertically stretch a thin (<2 mu m) evaporative film region with low thermal resistance, which enhances the heat transfer coefficient up to similar to 300% compared with the previously reported single-height superhydrophilic (SHS) micropost wicks with the same solid fraction. The stretch of thin film region does not significantly affect the capillary pressure and permeability determined from microscopic menisci. The optimum solid fraction maximizing the heat transfer coefficient occurs since the maximum height ratio between tall and short posts satisfying the pinning criteria decreases with increasing solid fraction, while the total perimeter of microposts increases. The vertical stretch of thin film also lowers the sensitivity of performance to liquid fill charge over 60%. This work suggests that DHS micropost wicks can provide significantly higher heat transfer coefficient in more robust way compared with previous SHS wicks without scarifying the maximum heat transfer performance. (C) 2014 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleHeat transfer and capillary performance of dual-height superhydrophilic micropost wicks-
dc.typeArticle-
dc.identifier.wosid000336352200048-
dc.identifier.scopusid2-s2.0-84896540841-
dc.type.rimsART-
dc.citation.volume73-
dc.citation.beginningpage438-
dc.citation.endingpage444-
dc.citation.publicationnameINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER-
dc.identifier.doi10.1016/j.ijheatmasstransfer.2014.02.020-
dc.contributor.localauthorNam, Youngsuk-
dc.contributor.nonIdAuthorRyu, Seunggeol-
dc.contributor.nonIdAuthorLee, Wonchul-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorMicropost-
dc.subject.keywordAuthorEvaporator-
dc.subject.keywordAuthorWick-
dc.subject.keywordAuthorSuperhydrophilic-
dc.subject.keywordAuthorThin film-
dc.subject.keywordAuthorMicro heat pipes-
dc.subject.keywordPlusEVAPORATOR WICKS-
dc.subject.keywordPlusFLUX-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0