Corrosion resistance of water repellent aluminum surfaces with various wetting morphologies

Cited 28 time in webofscience Cited 0 time in scopus
  • Hit : 112
  • Download : 0
We investigated the improved corrosion resistance of micro/nanostructured aluminum surfaces by varying wetting morphologies. By combining the wet-chemical oxidation schemes and low surface energy coating, we induced three different wetting morphologies including superhydrophilic, Cassie-mode superhydrophobic and Wenzel-mode hydrophobic on micro/nanostructured aluminum surfaces. The superhydrophilic oxide layers provided approximately 30-76% improvement in the corrosion resistance compared to untreated ones. When a hydrophobic coating was added to the oxide layers and Cassie-mode superhydrophobicity was induced, all types of samples showed over 95% increase in the corrosion resistance compared with untreated ones. When the air trapped on the superhydrophobic surfaces was removed in a vacuum environment, the corrosion resistance decreased but still provided 70-98% increase compared with untreated ones. The present work showed that the superhydrophobic treatment is a very effective way to improve the corrosion resistance but the proper choice of the passivation layer and hydrophobic coating can provide a meaningful increase in the corrosion resistance. The present work further clarified the high corrosion resistance of superhydrophobic aluminum surfaces and will help to develop practical anti-corrosion resistance surfaces.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2019-02
Language
English
Article Type
Article
Citation

APPLIED SURFACE SCIENCE, v.467, pp.1046 - 1052

ISSN
0169-4332
DOI
10.1016/j.apsusc.2018.10.218
URI
http://hdl.handle.net/10203/286201
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0