Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

Cited 898 time in webofscience Cited 0 time in scopus
  • Hit : 118
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorMiljkovic, Nenadko
dc.contributor.authorEnright, Ryanko
dc.contributor.authorNam, Youngsukko
dc.contributor.authorLopez, Kenko
dc.contributor.authorDou, Nicholasko
dc.contributor.authorSack, Jeanko
dc.contributor.authorWang, Evelyn N.ko
dc.date.accessioned2021-06-25T02:10:48Z-
dc.date.available2021-06-25T02:10:48Z-
dc.date.created2021-06-25-
dc.date.created2021-06-25-
dc.date.created2021-06-25-
dc.date.issued2013-01-
dc.identifier.citationNANO LETTERS, v.13, no.1, pp.179 - 187-
dc.identifier.issn1530-6984-
dc.identifier.urihttp://hdl.handle.net/10203/286187-
dc.description.abstractWhen droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleJumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces-
dc.typeArticle-
dc.identifier.wosid000313142300032-
dc.identifier.scopusid2-s2.0-84872118091-
dc.type.rimsART-
dc.citation.volume13-
dc.citation.issue1-
dc.citation.beginningpage179-
dc.citation.endingpage187-
dc.citation.publicationnameNANO LETTERS-
dc.identifier.doi10.1021/nl303835d-
dc.contributor.localauthorNam, Youngsuk-
dc.contributor.nonIdAuthorMiljkovic, Nenad-
dc.contributor.nonIdAuthorEnright, Ryan-
dc.contributor.nonIdAuthorLopez, Ken-
dc.contributor.nonIdAuthorDou, Nicholas-
dc.contributor.nonIdAuthorSack, Jean-
dc.contributor.nonIdAuthorWang, Evelyn N.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorJumping droplets-
dc.subject.keywordAuthornanostructure-
dc.subject.keywordAuthorsuperhydrophobic surface-
dc.subject.keywordAuthorenhanced condensation-
dc.subject.keywordAuthorcondensation heat transfer-
dc.subject.keywordPlusDROPWISE CONDENSATION-
dc.subject.keywordPlusENTROPY GENERATION-
dc.subject.keywordPlusWATER CONDENSATION-
dc.subject.keywordPlusHEAT-TRANSFER-
dc.subject.keywordPlusCOALESCENCE-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusCOPPER-
dc.subject.keywordPlusRANGE-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 898 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0