Metastable quantum dot for photoelectric devices via flash-induced one-step sequential self-formation

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 418
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorIm, Tae Hongko
dc.contributor.authorLee, Chul Heeko
dc.contributor.authorKim, Jong Chanko
dc.contributor.authorKim, Shinhoko
dc.contributor.authorKim, Minako
dc.contributor.authorPark, Cheol Minko
dc.contributor.authorLee, Han Eolko
dc.contributor.authorPark, Jung Hwanko
dc.contributor.authorJang, Min Seokko
dc.contributor.authorLee, Doh Changko
dc.contributor.authorChoi, Sung-Yoolko
dc.contributor.authorWang, Hee Seungko
dc.contributor.authorJeong, Hu Youngko
dc.contributor.authorJeon, Duk Youngko
dc.contributor.authorLee, Keon Jaeko
dc.date.accessioned2021-06-22T01:30:39Z-
dc.date.available2021-06-22T01:30:39Z-
dc.date.created2021-06-10-
dc.date.created2021-06-10-
dc.date.created2021-06-10-
dc.date.created2021-06-10-
dc.date.created2021-06-10-
dc.date.created2021-06-10-
dc.date.created2021-06-10-
dc.date.issued2021-06-
dc.identifier.citationNANO ENERGY, v.84, pp.105889-
dc.identifier.issn2211-2855-
dc.identifier.urihttp://hdl.handle.net/10203/286074-
dc.description.abstractThe first metastable phase Ag, ZnS: alpha-In2S3 QDs were synthesized by ultrafast light-material interaction. The multiple irradiation of millisecond flash pulses facilitated thermodynamic non-equilibrium superheating and quenching for metastable QD formation, as well as sequential self-formation of alpha-In2S3 QD nucleation, Ag-doping and ZnS-passivation by photo-responsive ionic kinetics. Upon multiple illumination of flash pulses, the synthesis mechanism of Ag, ZnS: alpha-In2S3 QD was experimentally proved by atomic-resolution transmission electron microscopy (AR-TEM), scanning TEM (STEM) and diverse spectral analysis. To verify the metastable phase QD formation by superheating/quenching in reaction solution, the localized surface plasmon (LSP) properties and instantaneous temperature increment were theoretically calculated using finite-difference time-domain (FDTD) method. Finally, optoelectronic performance and long-term stability of as-synthesized QDs were evaluated by demonstrating the broad wavelength metal-semiconductor-metal (MSM) photoelectric device.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleMetastable quantum dot for photoelectric devices via flash-induced one-step sequential self-formation-
dc.typeArticle-
dc.identifier.wosid000649696700001-
dc.identifier.scopusid2-s2.0-85101389463-
dc.type.rimsART-
dc.citation.volume84-
dc.citation.beginningpage105889-
dc.citation.publicationnameNANO ENERGY-
dc.identifier.doi10.1016/j.nanoen.2021.105889-
dc.contributor.localauthorJang, Min Seok-
dc.contributor.localauthorLee, Doh Chang-
dc.contributor.localauthorChoi, Sung-Yool-
dc.contributor.localauthorJeon, Duk Young-
dc.contributor.localauthorLee, Keon Jae-
dc.contributor.nonIdAuthorKim, Jong Chan-
dc.contributor.nonIdAuthorKim, Mina-
dc.contributor.nonIdAuthorJeong, Hu Young-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorLight-material interaction-
dc.subject.keywordAuthorMetastable quantum dot-
dc.subject.keywordAuthorSequential self-formation-
dc.subject.keywordAuthorLocalized-surface plasmon-
dc.subject.keywordAuthorPhotoelectric device-
dc.subject.keywordPlusTRIBOELECTRIC NANOGENERATOR-
dc.subject.keywordPlusCONTROLLABLE GROWTH-
dc.subject.keywordPlusAG2S NANOCRYSTALS-
dc.subject.keywordPlusHOT-INJECTION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusLASER-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusOLEYLAMINE-
dc.subject.keywordPlusMECHANISM-
Appears in Collection
CBE-Journal Papers(저널논문)EE-Journal Papers(저널논문)MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0