Chemomechanical effect of reduced graphene oxide encapsulation on hydrogen storage performance of Pd nanoparticles

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 349
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Daehoko
dc.contributor.authorKoh, Jinseokko
dc.contributor.authorKang, ShinYoungko
dc.contributor.authorHeo, Tae Wookko
dc.contributor.authorWood, Brandon C.ko
dc.contributor.authorCho, Eun Seonko
dc.contributor.authorHan, Seung Minko
dc.date.accessioned2021-06-08T04:51:09Z-
dc.date.available2021-06-08T04:51:09Z-
dc.date.created2021-05-17-
dc.date.created2021-05-17-
dc.date.created2021-05-17-
dc.date.issued2021-05-
dc.identifier.citationJOURNAL OF MATERIALS CHEMISTRY A, v.9, no.19, pp.11641 - 11650-
dc.identifier.issn2050-7488-
dc.identifier.urihttp://hdl.handle.net/10203/285608-
dc.description.abstractPrimary chemomechanical impacts of confinement on hydrogen storage performance are studied using a nanolaminate structure where reduced graphene oxide (rGO) encapsulates palladium (Pd) nanoparticles. Three contributing factors are identified that can alter the reaction enthalpy: nanosizing, chemical interaction with the encapsulant, and mechanical stress induced strain from a combination of clamping force and lateral pulling force exerted on the Pd nanoparticles. The mechanical contributions are quantified by combining transmission electron microscopy, ab initio computation, and continuum elasticity theory, from which the encapsulation is found to exert an additional strain of 4.96% and 2.99% before and after hydrogen absorption, respectively, increasing the Pd and Pd hydride (PdHx) reaction enthalpy by 1.3-2.8 kJ (mol H-2)(-1). The effect of the chemical interaction with rGO also raises the reaction enthalpy by up to 1.6 kJ (mol H-2)(-1), while the nanosizing effect decreases the reaction enthalpy. The three contributing factors to the reaction enthalpy are found to be similar in magnitude, where the net effect is in agreement with the measured enthalpy increase of 3.7 kJ (mol H-2)(-1) from the bulk value. Hydrogen absorption kinetics and capacity also improved, which is attributed to facile nucleation of the hydrogen-rich phase enabled by the inhomogeneous strain distribution over the encapsulated PdHx nanoparticles. These results demonstrate that the chemomechanical effect can be controlled in the nanolaminate structure, providing an ideal template for tuning hydrogen storage performance.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleChemomechanical effect of reduced graphene oxide encapsulation on hydrogen storage performance of Pd nanoparticles-
dc.typeArticle-
dc.identifier.wosid000646733200001-
dc.identifier.scopusid2-s2.0-85106166681-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue19-
dc.citation.beginningpage11641-
dc.citation.endingpage11650-
dc.citation.publicationnameJOURNAL OF MATERIALS CHEMISTRY A-
dc.identifier.doi10.1039/d1ta01240a-
dc.contributor.localauthorCho, Eun Seon-
dc.contributor.localauthorHan, Seung Min-
dc.contributor.nonIdAuthorKang, ShinYoung-
dc.contributor.nonIdAuthorHeo, Tae Wook-
dc.contributor.nonIdAuthorWood, Brandon C.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
Appears in Collection
CBE-Journal Papers(저널논문)MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0