Discontinuous bubble immersed finite element method for Poisson-Boltzmann-Nernst-Planck model

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 458
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKwon, Inko
dc.contributor.authorKwak, Do Youngko
dc.contributor.authorJo, Gwanghyunko
dc.date.accessioned2021-06-07T07:50:06Z-
dc.date.available2021-06-07T07:50:06Z-
dc.date.created2021-06-07-
dc.date.created2021-06-07-
dc.date.issued2021-08-
dc.identifier.citationJOURNAL OF COMPUTATIONAL PHYSICS, v.438-
dc.identifier.issn0021-9991-
dc.identifier.urihttp://hdl.handle.net/10203/285558-
dc.description.abstractWe develop a numerical scheme for Poisson-Boltzmann-Nernst-Planck (PBNP) model. We adopt Gummel's method to treat the nonlinearity of PBNP where Poisson-Boltzmannequation and Nernst-Planckequation are iteratively solved, and then the idea of discontinuous bubble (DB) to solve the Poisson-Boltzmannequation is exploited [6]. First, we regularize the solution of Poisson-Boltzmannequation to remove the singularity. Next, we introduce the DB function as in [6] to treat the nonhomogeneous jump conditions of the regularized solution. Then, we discretize the discontinuous bubble and the bilinear form of Poisson-Boltzmannequation and solve the discretized linear problem by the immersed finite element method. Once Poisson-Boltzmannequation is solved, we apply the control volume method to solve Nernst-Planckequation via an upwinding concept. This process is repeated by updating the previous approximation until the total residual of the system decreases below some tolerance. We provide our numericalexperiments. We observe optimal convergence rates for the concentration variable in all examples having analytic solutions. We observe that our scheme reflects well without oscillations the effect on the distribution of electrons caused by locating the singular charge close to the interface. (C) 2021 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleDiscontinuous bubble immersed finite element method for Poisson-Boltzmann-Nernst-Planck model-
dc.typeArticle-
dc.identifier.wosid000655588500002-
dc.identifier.scopusid2-s2.0-85105319610-
dc.type.rimsART-
dc.citation.volume438-
dc.citation.publicationnameJOURNAL OF COMPUTATIONAL PHYSICS-
dc.identifier.doi10.1016/j.jcp.2021.110370-
dc.contributor.localauthorKwak, Do Young-
dc.contributor.nonIdAuthorKwon, In-
dc.contributor.nonIdAuthorJo, Gwanghyun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorPoisson-Boltzmann-Nernst-Planckmodel-
dc.subject.keywordAuthorBiomolecular electrostatics-
dc.subject.keywordAuthorImmersed finite element method-
dc.subject.keywordAuthorDiscontinuous bubble function-
dc.subject.keywordAuthorGummel&apos-
dc.subject.keywordAuthors iteration-
dc.subject.keywordPlusINTERFACE PROBLEMS-
dc.subject.keywordPlusCRACK-GROWTH-
dc.subject.keywordPlusION CHANNELS-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusEQUATION-
dc.subject.keywordPlusSCHEME-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0