Plasmonic Hot Hole-Driven Water Splitting on Au Nanoprisms/P-Type GaN

Cited 59 time in webofscience Cited 0 time in scopus
  • Hit : 227
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorSong, Kyoungjaeko
dc.contributor.authorLee, Hyunhwako
dc.contributor.authorLee, Moonsangko
dc.contributor.authorPark, Jeong Youngko
dc.date.accessioned2021-05-26T00:30:17Z-
dc.date.available2021-05-26T00:30:17Z-
dc.date.created2021-05-25-
dc.date.created2021-05-25-
dc.date.created2021-05-25-
dc.date.issued2021-04-
dc.identifier.citationACS ENERGY LETTERS, v.6, no.4, pp.1333 - 1339-
dc.identifier.issn2380-8195-
dc.identifier.urihttp://hdl.handle.net/10203/285358-
dc.description.abstractWhile hot carrier generation from surface plasmon decay at the surface of a nanostructured metal offers a distinctive concept for boosting photoelectrocatalytic reactions, the nature of the plasmonic hot hole transfer based on the sizes of metallic nanomaterials has not been investigated in depth experimentally. Here, we report direct photoelectrochemical (PEC) experimental proof that the injection of plasmonic hot holes depends on the size of the metallic nanostructures. PEC results clearly indicate that a plasmonic template with smaller Au nanoprisms exhibits higher external and internal quantum efficiencies, leading to a significant enhancement of both oxygen evolution and hydrogen evolution reactions. We verified that these outcomes stemmed from the enhanced hot hole generation with higher energy and transfer efficiency driven by enhanced field confinement. These findings provide a facile strategy by which futuristic photocatalysis and solar energy conversion applications based on plasmonic hot holes can be expedited.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titlePlasmonic Hot Hole-Driven Water Splitting on Au Nanoprisms/P-Type GaN-
dc.typeArticle-
dc.identifier.wosid000639063800014-
dc.identifier.scopusid2-s2.0-85103773016-
dc.type.rimsART-
dc.citation.volume6-
dc.citation.issue4-
dc.citation.beginningpage1333-
dc.citation.endingpage1339-
dc.citation.publicationnameACS ENERGY LETTERS-
dc.identifier.doi10.1021/acsenergylett.1c00366-
dc.contributor.localauthorPark, Jeong Young-
dc.contributor.nonIdAuthorLee, Hyunhwa-
dc.contributor.nonIdAuthorLee, Moonsang-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusHYDROGEN EVOLUTION REACTION-
dc.subject.keywordPlusRESONANCE-
dc.subject.keywordPlusELECTRONS-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusCARRIERS-
dc.subject.keywordPlusQUANTUM-
dc.subject.keywordPlusSHAPE-
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 59 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0