Enhancement of lipid production in Nannochloropsis salina by overexpression of endogenous NADP-dependent malic enzyme

Cited 19 time in webofscience Cited 0 time in scopus
  • Hit : 322
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorJeon, Seungjibko
dc.contributor.authorKoh, Hyun Giko
dc.contributor.authorCho, Jun Mukko
dc.contributor.authorKang, Nam Kyuko
dc.contributor.authorChang, Yong Keunko
dc.date.accessioned2021-04-20T04:10:26Z-
dc.date.available2021-04-20T04:10:26Z-
dc.date.created2021-04-19-
dc.date.issued2021-04-
dc.identifier.citationALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, v.54-
dc.identifier.issn2211-9264-
dc.identifier.urihttp://hdl.handle.net/10203/282471-
dc.description.abstractMicroalgae are promising alternative feedstocks that can be used to produce biofuels and replace conventional fossil fuels. In order to increase the lipid production of microalgae, strain development via genetic engineering is required. To date, metabolic engineering studies have mainly focused on lipid synthesis pathways. However, the complicated metabolic pathways that exist in many organelles along with limitations of genetic engineering tools have made it difficult to obtain desirable microalgal strains. As an alternative strategy, we tried to increase carbon flux into fatty acid synthesis by overexpressing the NADP-dependent malic enzyme, NsME1, in Nanno-chloropsis salina. We found that the biomass and fatty acid methyl ester (FAME) contents were increased in NsME1 overexpressing transformants, such that the FAME yield of the top-producing NsME1 transformant was 53% higher than the wild type. To understand the effects of NsME1 on lipid production, we analyzed the total carbon concentration and NADPH/NADP ratio, which were found to be enhanced in the transformants. We also investigated mRNA expression levels of genes involved in C4-like carbon concentrating mechanism and fatty acid synthesis by quantitative real-time PCR, and confirmed their positive contribution to fatty acid production. Taken together, our results demonstrate that overexpression of NsME1 could simultaneously improve the carbon concentration and reducing power in cells, thereby increasing the lipid and FAME yields of Nannochloropsis salina. We suggest that NsME1 can serve as a promising genetic target for enhancing lipid-based bio-products in Nannochloropsis and potentially other industrial microalgae.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleEnhancement of lipid production in Nannochloropsis salina by overexpression of endogenous NADP-dependent malic enzyme-
dc.typeArticle-
dc.identifier.wosid000632334800013-
dc.identifier.scopusid2-s2.0-85100631828-
dc.type.rimsART-
dc.citation.volume54-
dc.citation.publicationnameALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS-
dc.identifier.doi10.1016/j.algal.2021.102218-
dc.contributor.localauthorChang, Yong Keun-
dc.contributor.nonIdAuthorKoh, Hyun Gi-
dc.contributor.nonIdAuthorKang, Nam Kyu-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorMicroalgae-
dc.subject.keywordAuthorNannochloropsis salina-
dc.subject.keywordAuthorMalic enzyme-
dc.subject.keywordAuthorFatty acid methyl ester-
dc.subject.keywordAuthorNADPH-
dc.subject.keywordAuthorNADP-
dc.subject.keywordAuthorCarbon concentrating mechanism-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 19 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0