Strategic implementation of phosphorus repletion strategy in continuous two-stage cultivation of Chlorella sp. HS2: Evaluation for biofuel applications

Cited 12 time in webofscience Cited 8 time in scopus
  • Hit : 363
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorNayak, Manoranjanko
dc.contributor.authorSuh, William I.ko
dc.contributor.authorCho, Jun Mukko
dc.contributor.authorKim, Hee Suko
dc.contributor.authorLee, Bongsooko
dc.contributor.authorChang, Yong Keunko
dc.date.accessioned2021-03-26T01:53:38Z-
dc.date.available2021-03-26T01:53:38Z-
dc.date.created2020-09-07-
dc.date.issued2020-10-
dc.identifier.citationJOURNAL OF ENVIRONMENTAL MANAGEMENT, v.271-
dc.identifier.issn0301-4797-
dc.identifier.urihttp://hdl.handle.net/10203/281871-
dc.description.abstractLipid production in microalgae under nitrogen (N) starved condition can be enhanced by excess phosphorus (P) supply in the second stage of two-stage cultivation strategy. However, implementing two-stage cultivation is difficult in large-scale cultivation system as it requires high energy of transferring large algal biomass from first stage to second stage. To address this problem, we have optimized a continuous two-stage (CTS) cultivation strategy using Chlorella sp. HS2, where nitrogen in the growth environment is depleted naturally via consumption. To enhance both biomass and lipid productivity this strategy explored supplementation of additional P from 50% to 2500% of the initial concentration at the start of N-limited second stage of growth. The results of the optimization study in photobioreactor (PBR) showed that supplementing 500% of initial P and 100% of initial other nutrients (O) (N-0-P-500-O-100) on 5th day showed the maximum biomass productivity of 774.4 mg L-1 d(-1). It was observed that Chlorella sp. HS2 grown in PBR yielded higher biomass (3.8 times), lipid (6.1 times) and carbohydrate (5.5 times) productivity in comparison to the open raceway ponds (ORP) study, under optimum nutrient and carbon supply condition. The maximum lipid (289.6 mg L-1 d(-1)) and carbohydrate (219.2 mg L-1 d(-1)) productivities were obtained in TPBR-3, which were 1.9 and 1.3 times higher than that of TPBR-2 (+ve control) and 9.6 and 3.7 times higher than that of TPBR-1 (-ve control), respectively. Fatty acid mainly composed of C-16/C-18 (84.5%-85.7%), which makes the microalgal oil suitable for biofuel production. This study concluded that feeding excess amount of P is an effective and scalable strategy to improve the biomass and lipid productivity of CTS cultivation.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD-
dc.titleStrategic implementation of phosphorus repletion strategy in continuous two-stage cultivation of Chlorella sp. HS2: Evaluation for biofuel applications-
dc.typeArticle-
dc.identifier.wosid000558812000093-
dc.identifier.scopusid2-s2.0-85087475846-
dc.type.rimsART-
dc.citation.volume271-
dc.citation.publicationnameJOURNAL OF ENVIRONMENTAL MANAGEMENT-
dc.identifier.doi10.1016/j.jenvman.2020.111041-
dc.contributor.localauthorChang, Yong Keun-
dc.contributor.nonIdAuthorNayak, Manoranjan-
dc.contributor.nonIdAuthorSuh, William I.-
dc.contributor.nonIdAuthorLee, Bongsoo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorMicroalgae-
dc.subject.keywordAuthorBiofuel-
dc.subject.keywordAuthorContinuous two-stage cultivation-
dc.subject.keywordAuthorPhosphorus-
dc.subject.keywordAuthorBiomass productivity-
dc.subject.keywordAuthorLipid productivity-
dc.subject.keywordPlusNITROGEN-STARVATION-
dc.subject.keywordPlusLIPID PRODUCTION-
dc.subject.keywordPlusPERFORMANCE EVALUATION-
dc.subject.keywordPlusCO2 BIOFIXATION-
dc.subject.keywordPlusLIGHT-INTENSITY-
dc.subject.keywordPlusWASTE-WATER-
dc.subject.keywordPlusMICROALGAE-
dc.subject.keywordPlusBIOMASS-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusBIODIESEL-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0