Deep-injection floating-catalyst chemical vapor deposition to continuously synthesize carbon nanotubes with high aspect ratio and high crystallinity

Cited 49 time in webofscience Cited 26 time in scopus
  • Hit : 631
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Sung-Hyunko
dc.contributor.authorPark, Junbeomko
dc.contributor.authorPark, Ji Hongko
dc.contributor.authorLee, Dong-Myeongko
dc.contributor.authorLee, Annako
dc.contributor.authorMoon, Sook Youngko
dc.contributor.authorLee, Sei Youngko
dc.contributor.authorJeong, Hyeon Suko
dc.contributor.authorKim, Seung Minko
dc.date.accessioned2021-03-16T01:50:05Z-
dc.date.available2021-03-16T01:50:05Z-
dc.date.created2020-12-29-
dc.date.created2020-12-29-
dc.date.issued2021-03-
dc.identifier.citationCARBON, v.173, pp.901 - 909-
dc.identifier.issn0008-6223-
dc.identifier.urihttp://hdl.handle.net/10203/281558-
dc.description.abstractThe deep-injection floating-catalyst chemical vapor deposition (DI-FCCVD) technique is introduced to continuously synthesize carbon nanotubes (CNTs) with high aspect ratio (AR>17000) and high crystallinity (IG/ID > 60) at high production rate (>6 mg/min). In this technique all reactants are injected directly and rapidly into high-temperature reaction zone through thin alumina tube; this process leads to simultaneous thermal decomposition of well-mixed catalyst precursors (ferrocene and thiophene), and thus to formation of uniformly-sized catalyst particles. Carbon nanotube fiber (CNTF) fabricated from high-AR CNT has specific strength of 2.94 N/tex and specific modulus of 231 N/tex, which are comparable to those of the state-of-the-art carbon fiber. Both DI-FCCVD and wet spinning methods are easily scalable to mass production, so this study may enable widespread industrial application of CNTFs. © 2020 Elsevier Ltd-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleDeep-injection floating-catalyst chemical vapor deposition to continuously synthesize carbon nanotubes with high aspect ratio and high crystallinity-
dc.typeArticle-
dc.identifier.wosid000613126400003-
dc.identifier.scopusid2-s2.0-85097330925-
dc.type.rimsART-
dc.citation.volume173-
dc.citation.beginningpage901-
dc.citation.endingpage909-
dc.citation.publicationnameCARBON-
dc.identifier.doi10.1016/j.carbon.2020.11.065-
dc.contributor.nonIdAuthorLee, Sung-Hyun-
dc.contributor.nonIdAuthorPark, Junbeom-
dc.contributor.nonIdAuthorLee, Anna-
dc.contributor.nonIdAuthorMoon, Sook Young-
dc.contributor.nonIdAuthorLee, Sei Young-
dc.contributor.nonIdAuthorJeong, Hyeon Su-
dc.contributor.nonIdAuthorKim, Seung Min-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCarbon nanotube-
dc.subject.keywordAuthorCarbon nanotube fiber-
dc.subject.keywordAuthorHigh-aspect ratio-
dc.subject.keywordAuthorHigh-crystallinity-
dc.subject.keywordAuthorHigh-strength-
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 49 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0