Stress-Induced Structural Transformations in Au Nanocrystals

Cited 8 time in webofscience Cited 4 time in scopus
  • Hit : 241
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorParakh, Abhinavko
dc.contributor.authorLee, Sangryunko
dc.contributor.authorKiani, Mehrdad T.ko
dc.contributor.authorDoan, Davidko
dc.contributor.authorKunz, Martinko
dc.contributor.authorDoran, Andrewko
dc.contributor.authorRyu, Seunghwako
dc.contributor.authorGu, X. Wendyko
dc.date.accessioned2021-02-04T04:30:04Z-
dc.date.available2021-02-04T04:30:04Z-
dc.date.created2020-11-30-
dc.date.created2020-11-30-
dc.date.issued2020-10-
dc.identifier.citationNANO LETTERS, v.20, no.10, pp.7767 - 7773-
dc.identifier.issn1530-6984-
dc.identifier.urihttp://hdl.handle.net/10203/280562-
dc.description.abstractNanocrystals can exist in multiply twinned structures like icosahedron or single crystalline structures like cuboctahedron. Transformations between these structures can proceed through diffusion or displacive motion. Experimental studies on nanocrystal structural transformations have focused on high-temperature diffusion-mediated processes. Limited experimental evidence of displacive motion exists. We report structural transformation of 6 nm Au nanocrystals under nonhydrostatic pressure of 7.7 GPa in a diamond anvil cell that is driven by displacive motion. X-ray diffraction and transmission electron microscopy were used to detect the structural transformation from multiply twinned to single crystalline. Single crystalline nanocrystals were recovered after unloading, then quickly reverted to the multiply twinned state after dispersion in toluene. The dynamics of recovery was captured using TEM which showed surface recrystallization and rapid twin boundary motion. Molecular dynamics simulations showed that twin boundaries are unstable due to defects nucleated from the interior of the nanocrystal.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleStress-Induced Structural Transformations in Au Nanocrystals-
dc.typeArticle-
dc.identifier.wosid000613073900033-
dc.identifier.scopusid2-s2.0-85092944254-
dc.type.rimsART-
dc.citation.volume20-
dc.citation.issue10-
dc.citation.beginningpage7767-
dc.citation.endingpage7773-
dc.citation.publicationnameNANO LETTERS-
dc.identifier.doi10.1021/acs.nanolett.0c03371-
dc.contributor.localauthorRyu, Seunghwa-
dc.contributor.nonIdAuthorParakh, Abhinav-
dc.contributor.nonIdAuthorKiani, Mehrdad T.-
dc.contributor.nonIdAuthorDoan, David-
dc.contributor.nonIdAuthorKunz, Martin-
dc.contributor.nonIdAuthorDoran, Andrew-
dc.contributor.nonIdAuthorGu, X. Wendy-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorDiamond Anvil Cell-
dc.subject.keywordAuthorX-ray Diffraction-
dc.subject.keywordAuthorTransmission Electron Microscopy-
dc.subject.keywordAuthorMolecular Dynamics Simulation-
dc.subject.keywordAuthorAsymmetric Mackay-like Transformation-
dc.subject.keywordPlusGOLD NANOPARTICLES-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordPlusNANOCLUSTERS-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusCROSSOVER-
dc.subject.keywordPlusSTRAINS-
dc.subject.keywordPlusPACKING-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0