Breaking the elastic limit of piezoelectric ceramics using nanostructures: A case study using ZnO

Cited 21 time in webofscience Cited 15 time in scopus
  • Hit : 424
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Hoonko
dc.contributor.authorYun, Seokjungko
dc.contributor.authorKim, Kisunko
dc.contributor.authorKim, Wonsikko
dc.contributor.authorRyu, Jeongjaeko
dc.contributor.authorNam, Hyeon Gyunko
dc.contributor.authorHan, Seung Minko
dc.contributor.authorJeon, Seokwooko
dc.contributor.authorHong, Seungbumko
dc.date.accessioned2020-12-28T08:10:10Z-
dc.date.available2020-12-28T08:10:10Z-
dc.date.created2020-12-04-
dc.date.created2020-12-04-
dc.date.created2020-12-04-
dc.date.created2020-12-04-
dc.date.created2020-12-04-
dc.date.issued2020-12-
dc.identifier.citationNANO ENERGY, v.78-
dc.identifier.issn2211-2855-
dc.identifier.urihttp://hdl.handle.net/10203/279157-
dc.description.abstractPiezoelectric materials are suitable for haptic technology as they can convert mechanical stimuli into electrical signals and vice-versa. However, owing to their disadvantageous mechanical properties such as brittleness (in ceramics) and a low piezoelectric coefficient (in polymers), their application in haptic technology remains challenging. In this paper, we introduce a truss-like 3D hollow nanostructure using zinc oxide (ZnO) that exhibits a drastically improved elastic strain limit while maintaining a piezoelectric coefficient similar to that of singlecrystal ZnO. The ZnO hollow nanostructure was fabricated using proximity field nanopatterning (PnP) and atomic layer deposition (ALD) at four different processing temperatures. The piezoelectric characteristics were analyzed through dual AC resonance tracking piezoresponse force microscopy (PFM), and the piezoelectric coefficient was measured to be up to 9.2 pm/V. The nanopillar compression test result showed that the measured elastic strain limit of approximately 10% was at least 3 times greater than the previously reported value. The extended elastic limit of the 3D hollow structure was further supported by finite element simulations. The ZnO hollow nanostructure shows excellent potential for its application to enhanced haptic devices, which mimic the human sense of touch.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleBreaking the elastic limit of piezoelectric ceramics using nanostructures: A case study using ZnO-
dc.typeArticle-
dc.identifier.wosid000595104500004-
dc.identifier.scopusid2-s2.0-85089818240-
dc.type.rimsART-
dc.citation.volume78-
dc.citation.publicationnameNANO ENERGY-
dc.identifier.doi10.1016/j.nanoen.2020.105259-
dc.contributor.localauthorHan, Seung Min-
dc.contributor.localauthorJeon, Seokwoo-
dc.contributor.localauthorHong, Seungbum-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorZnO-
dc.subject.keywordAuthorHollow nanostructure-
dc.subject.keywordAuthorElastic limit-
dc.subject.keywordAuthorPiezoelectric coefficient-
dc.subject.keywordAuthorPiezoresponse force microscopy-
dc.subject.keywordAuthorNano-indentation-
dc.subject.keywordPlusATOMIC LAYER DEPOSITION-
dc.subject.keywordPlusZINC-OXIDE-
dc.subject.keywordPlusSINGLE-CRYSTAL-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusPHASE-
dc.subject.keywordPlusNANOGENERATOR-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusEVOLUTION-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0