Surface-engineered oxidized two-dimensional Sb for efficient visible light-driven N-2 fixation

Cited 35 time in webofscience Cited 26 time in scopus
  • Hit : 330
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorZhao, Zhenqingko
dc.contributor.authorChoi, Changhyeokko
dc.contributor.authorHong, Songko
dc.contributor.authorShen, Huidongko
dc.contributor.authorYan, Chaoko
dc.contributor.authorMasa, Justusko
dc.contributor.authorJung, Yousungko
dc.contributor.authorQiu, Jieshanko
dc.contributor.authorSun, Zhenyuko
dc.date.accessioned2020-12-23T05:30:06Z-
dc.date.available2020-12-23T05:30:06Z-
dc.date.created2020-12-22-
dc.date.created2020-12-22-
dc.date.created2020-12-22-
dc.date.issued2020-12-
dc.identifier.citationNANO ENERGY, v.78, pp.105368-
dc.identifier.issn2211-2855-
dc.identifier.urihttp://hdl.handle.net/10203/278937-
dc.description.abstractSolar N-2 fixation under visible light offers a promising method toward sustainable NH3 production at benign conditions. However, it still remains a formidable challenge to activate and cleave N=N bonds and promote the separation and transport of electrons and holes during photocatalysis. To address these issues, the discovery and design of high-performance and robust photocatalysts is imperative. Here, we report the defect engineering of two-dimensional oxidized Sb nanosheets to activate intrinsically inactive Sb for efficient visible light-driven N-2 reduction to NH3. Impressively, the Sb nanosheets rich in Sb and oxygen vacancies afford a remarkable NH3 formation rate of up to 388.5 mu g(NH3) h(-1) g(cat)(-1) without cocatalyst in visible light, 8 times higher than that for bulk Sb and also significantly outperforming many previously reported photocatalysts. The defective Sb nanosheets exhibit excellent stability after five successive reaction cycles. Further density functional theory calculations reveal a considerably strong interaction between N-2 and defects on the surface and edge of Sb nanosheets, which facilitates the formation of *NNH (N-2 + (H+ + e-) -> *NNH, where * denotes an adsorption site), thus promoting photocatalytic N2 reduction. This finding opens a novel avenue to enhancing N2 photofixation over inherently inactive surfaces by synergistically engineering defect sites.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleSurface-engineered oxidized two-dimensional Sb for efficient visible light-driven N-2 fixation-
dc.typeArticle-
dc.identifier.wosid000595252700002-
dc.identifier.scopusid2-s2.0-85090909508-
dc.type.rimsART-
dc.citation.volume78-
dc.citation.beginningpage105368-
dc.citation.publicationnameNANO ENERGY-
dc.identifier.doi10.1016/j.nanoen.2020.105368-
dc.contributor.localauthorJung, Yousung-
dc.contributor.nonIdAuthorZhao, Zhenqing-
dc.contributor.nonIdAuthorHong, Song-
dc.contributor.nonIdAuthorShen, Huidong-
dc.contributor.nonIdAuthorYan, Chao-
dc.contributor.nonIdAuthorMasa, Justus-
dc.contributor.nonIdAuthorQiu, Jieshan-
dc.contributor.nonIdAuthorSun, Zhenyu-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorN-2 fixation-
dc.subject.keywordAuthorPhotocatalysis-
dc.subject.keywordAuthorTwo-dimensional Sb-
dc.subject.keywordAuthorVisible light-
dc.subject.keywordAuthorVacancy-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 35 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0