Molecular-Level Understanding of Excited States of N-Annulated Rylene Dye for Dye-Sensitized Solar Cells

Cited 11 time in webofscience Cited 6 time in scopus
  • Hit : 174
  • Download : 0
In organic push-pull dyes for photovoltaics, it is important to understand the character of intramolecular charge transfer states. Accordingly, the dynamics of charge carriers in photosensitizers based on donor-acceptor structures have been widely studied. Recently, photosensitizers based on N-annulated rylene derivatives have been extensively utilized in organic solar cells due to their outstanding optical properties and considerable power conversion efficiencies, but the excited-state dynamics in those materials have not been investigated yet. Here, we explore the ultrafast dynamics of intramolecular charge transfer (ICT) occurring in the excited states of a diphenylamine N-annulated naphthalene dicarboximide derivative (DND) and present the photovoltaic performance of DND. By using steady-state absorption/emission spectroscopy, femtosecond broadband transient absorption spectroscopy, and DFT calculations, we found that the ICT dynamics of DND vary sensitively depending on the solvent polarity, and the ultrafast transition from the Franck-Condon state to the intramolecular charge transfer state is correlated to the solvation dynamics. This correlation underlines that the ultrafast ICT is strongly coupled with the solvation, accounting for the dependence of the ICT dynamics on the solvent polarity.
Publisher
AMER CHEMICAL SOC
Issue Date
2020-10
Language
English
Article Type
Article
Citation

JOURNAL OF PHYSICAL CHEMISTRY C, v.124, no.42, pp.22993 - 23003

ISSN
1932-7447
DOI
10.1021/acs.jpcc.0c06532
URI
http://hdl.handle.net/10203/278822
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0