Scalable parallel flash firmware for many-core architectures

Cited 34 time in webofscience Cited 0 time in scopus
  • Hit : 115
  • Download : 0
NVMe is designed to unshackle flash from a traditional storage bus by allowing hosts to employ many threads to achieve higher bandwidth. While NVMe enables users to fully exploit all levels of parallelism offered by modern SSDs, current firmware designs are not scalable and have difficulty in handling a large number of I/O requests in parallel due to its limited computation power and many hardware contentions. We propose DeepFlash, a novel manycore-based storage platform that can process more than a million I/O requests in a second (1MIOPS) while hiding long latencies imposed by its internal flash media. Inspired by a parallel data analysis system, we design the firmware based on many-to-many threading model that can be scaled horizontally. The proposed DeepFlash can extract the maximum performance of the underlying flash memory complex by concurrently executing multiple firmware components across many cores within the device. To show its extreme parallel scalability, we implement DeepFlash on a many-core prototype processor that employs dozens of lightweight cores, analyze new challenges from parallel I/O processing and address the challenges by applying concurrency-aware optimizations. Our comprehensive evaluation reveals that DeepFlash can serve around 4.5 GB/s, while minimizing the CPU demand on microbenchmarks and real server workloads.
Publisher
USENIX Association
Issue Date
2020-02-26
Language
English
Citation

18th USENIX Conference on File and Storage Technologies, FAST 2020, pp.121 - 136

URI
http://hdl.handle.net/10203/278498
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 34 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0