Effect of spin diffusion on current generated by spin motive force

Cited 9 time in webofscience Cited 10 time in scopus
  • Hit : 198
  • Download : 0
Spin motive force is a spin-dependent force on conduction electrons induced by magnetization dynamics. To examine its effects on magnetization dynamics, it is indispensable to take into account spin accumulation, spin diffusion, and spin-flip scattering since the spin motive force is, in general, nonuniform. We examine the effects of all these on the way the spin motive force generates the charge and spin currents in conventional situations, where the conduction electron spin relaxation dynamics is much faster than the magnetization dynamics. When the spin-dependent electric field is spatially localized, which is common in experimental situations, we find that the conservative part of the spin motive force is unable to generate the charge current due to the cancellation effect by the diffusion current. We also find that the spin current is a nonlocal function of the spin motive force and can be effectively expressed in terms of nonlocal Gilbert damping tensor. It turns out that any spin-independent potential such as Coulomb potential does not affect our principal results. At the last part of this paper, we apply our theory to current-induced domain wall motion.
Publisher
AMER PHYSICAL SOC
Issue Date
2011-08
Language
English
Article Type
Article
Citation

PHYSICAL REVIEW B, v.84, no.5

ISSN
1098-0121
DOI
10.1103/PhysRevB.84.054462
URI
http://hdl.handle.net/10203/277614
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0