Spin-orbit-torque engineering via oxygen manipulation

Cited 271 time in webofscience Cited 233 time in scopus
  • Hit : 153
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorQiu, Xuepengko
dc.contributor.authorNarayanapillai, Kulothungasagaranko
dc.contributor.authorWu, Yangko
dc.contributor.authorDeorani, Praveenko
dc.contributor.authorYang, Dong-Hyukko
dc.contributor.authorNoh, Woo-Sukko
dc.contributor.authorPark, Jae-Hoonko
dc.contributor.authorLee, Kyung-Jinko
dc.contributor.authorLee, Hyun-Wooko
dc.contributor.authorYang, Hyunsooko
dc.date.accessioned2020-11-23T04:10:05Z-
dc.date.available2020-11-23T04:10:05Z-
dc.date.created2020-11-18-
dc.date.issued2015-04-
dc.identifier.citationNATURE NANOTECHNOLOGY, v.10, no.4, pp.333 - 338-
dc.identifier.issn1748-3387-
dc.identifier.urihttp://hdl.handle.net/10203/277463-
dc.description.abstractSpin transfer torques allow the electrical manipulation of magnetization at room temperature, which is desirable in spintronic devices such as spin transfer torque memories. When combined with spin-orbit coupling, they give rise to spin-orbit torques, which are a more powerful tool for controlling magnetization and can enrich device functionalities. The engineering of spin-orbit torques, based mostly on the spin Hall effect, is being intensely pursued. Here, we report that the oxidation of spin-orbit-torque devices triggers a new mechanism of spin-orbit torque, which is about two times stronger than that based on the spin Hall effect. We thus introduce a way to engineer spin-orbit torques via oxygen manipulation. Combined with electrical gating of the oxygen level, our findings may also pave the way towards reconfigurable logic devices.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleSpin-orbit-torque engineering via oxygen manipulation-
dc.typeArticle-
dc.identifier.wosid000353365600016-
dc.identifier.scopusid2-s2.0-84927176830-
dc.type.rimsART-
dc.citation.volume10-
dc.citation.issue4-
dc.citation.beginningpage333-
dc.citation.endingpage338-
dc.citation.publicationnameNATURE NANOTECHNOLOGY-
dc.identifier.doi10.1038/NNANO.2015.18-
dc.contributor.localauthorLee, Kyung-Jin-
dc.contributor.nonIdAuthorQiu, Xuepeng-
dc.contributor.nonIdAuthorNarayanapillai, Kulothungasagaran-
dc.contributor.nonIdAuthorWu, Yang-
dc.contributor.nonIdAuthorDeorani, Praveen-
dc.contributor.nonIdAuthorYang, Dong-Hyuk-
dc.contributor.nonIdAuthorNoh, Woo-Suk-
dc.contributor.nonIdAuthorPark, Jae-Hoon-
dc.contributor.nonIdAuthorLee, Hyun-Woo-
dc.contributor.nonIdAuthorYang, Hyunsoo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusMAGNETIC CIRCULAR-DICHROISM-
dc.subject.keywordPlusEFFECTIVE-FIELD-
dc.subject.keywordPlusDOMAIN-WALLS-
dc.subject.keywordPlusDRIVEN-
dc.subject.keywordPlusSPINTRONICS-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusDEPENDENCE-
dc.subject.keywordPlusNANOWIRES-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 271 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0