Color reproduction in virtual lip makeup using a convolutional neural network

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 546
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Meereh Candiceko
dc.contributor.authorLee, Ji-Hyunko
dc.date.accessioned2020-10-13T08:55:06Z-
dc.date.available2020-10-13T08:55:06Z-
dc.date.created2020-08-31-
dc.date.created2020-08-31-
dc.date.created2020-08-31-
dc.date.issued2020-12-
dc.identifier.citationCOLOR RESEARCH AND APPLICATION, v.45, no.6, pp.1190 - 1201-
dc.identifier.issn0361-2317-
dc.identifier.urihttp://hdl.handle.net/10203/276533-
dc.description.abstractRecently, it has become possible to examine the suitability of cosmetic products by virtual makeup techniques so that shoppers can buy products online. The virtual makeup can also be utilized at offline stores to prevent possible sanitation problems associated with swatching. Faithful color reproduction is one of the most important factors in virtual makeup applications. Thus, the color difference between the virtual and real makeup results needs to be minimized. However, most previous studies on virtual makeup focus on the recommendation of makeup style rather than on the accuracy of color reproduction. This article proposes an accurate lipstick color reproduction method based on convolutional neural network. This study indicates that the proposed method using a convolutional neural network results in the minimum value of color difference compared with linear regression and multilayer perceptron algorithms.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleColor reproduction in virtual lip makeup using a convolutional neural network-
dc.typeArticle-
dc.identifier.wosid000559389400001-
dc.identifier.scopusid2-s2.0-85089392362-
dc.type.rimsART-
dc.citation.volume45-
dc.citation.issue6-
dc.citation.beginningpage1190-
dc.citation.endingpage1201-
dc.citation.publicationnameCOLOR RESEARCH AND APPLICATION-
dc.identifier.doi10.1002/col.22549-
dc.contributor.localauthorLee, Ji-Hyun-
dc.contributor.nonIdAuthorKim, Meereh Candice-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle; Early Access-
dc.subject.keywordAuthorCIELAB color space-
dc.subject.keywordAuthorcolor difference-
dc.subject.keywordAuthorcolor reproduction-
dc.subject.keywordAuthorconvolutional neural network-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorvirtual makeup-
Appears in Collection
GCT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0