Metallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes

Cited 25 time in webofscience Cited 15 time in scopus
  • Hit : 649
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorVelioglu, Sadiyeko
dc.contributor.authorKarahan, Huseyin Enisko
dc.contributor.authorGoh, Kunliko
dc.contributor.authorBae, Tae-Hyunko
dc.contributor.authorChen, Yuanko
dc.contributor.authorChew, Jia Weiko
dc.date.accessioned2020-09-18T04:02:04Z-
dc.date.available2020-09-18T04:02:04Z-
dc.date.created2020-06-08-
dc.date.issued2020-06-
dc.identifier.citationSMALL, v.16, no.25, pp.1907575-
dc.identifier.issn1613-6810-
dc.identifier.urihttp://hdl.handle.net/10203/276118-
dc.description.abstractCarbon nanotubes (CNTs) with hydrophobic and atomically smooth inner channels are promising for building ultrahigh-flux nanofluidic platforms for energy harvesting, health monitoring, and water purification. Conventional wisdom is that nanoconfinement effects determine water transport in CNTs. Here, using full-atomistic molecular dynamics simulations, it is shown that water transport behavior in CNTs strongly correlates with the electronic properties of single-walled CNTs (metallic (met) vs semiconducting (s/c)), which is as dominant as the effect of nanoconfinement. Three pairs of CNTs (i.e., (8,8)(met), 10.85 angstrom vs (9,7)(s/c), 10.88 angstrom; (9,8)(s/c), 11.53 angstrom vs (10,7)(met), 11.59 angstrom; and (9,9)(met), 12.20 angstrom vs (10,8)(s/c), 12.23 angstrom) are used to investigate the roles of diameter and metallicity. Specifically, the (9,8)(s/c) can restrict the hydrogen-bonding-mediated structuring of water and give the highest reduction in carbon-water interaction energy, providing an extraordinarily high water flux, around 250 times that of the commercial reverse osmosis membranes and approximately fourfold higher than the flux of the state-of-the-art boron nitrate nanotubes. Further, the high performance of (9,8)(s/c) is also reproducible when embedded in lipid bilayers as synthetic high-water flux porins. Given the increasing availability of high-purity CNTs, these findings provide valuable guides for realizing novel CNT-enhanced nanofluidic systems.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleMetallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes-
dc.typeArticle-
dc.identifier.wosid000534396100001-
dc.identifier.scopusid2-s2.0-85085014827-
dc.type.rimsART-
dc.citation.volume16-
dc.citation.issue25-
dc.citation.beginningpage1907575-
dc.citation.publicationnameSMALL-
dc.identifier.doi10.1002/smll.201907575-
dc.contributor.localauthorBae, Tae-Hyun-
dc.contributor.nonIdAuthorVelioglu, Sadiye-
dc.contributor.nonIdAuthorKarahan, Huseyin Enis-
dc.contributor.nonIdAuthorGoh, Kunli-
dc.contributor.nonIdAuthorChen, Yuan-
dc.contributor.nonIdAuthorChew, Jia Wei-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorchirality-
dc.subject.keywordAuthormetallicity-
dc.subject.keywordAuthormolecular dynamics-
dc.subject.keywordAuthornanofluidics-
dc.subject.keywordAuthorwater transport-
dc.subject.keywordPlusMEMBRANES-
dc.subject.keywordPlusPERMEABILITY-
dc.subject.keywordPlusPURIFICATION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusTECHNOLOGY-
dc.subject.keywordPlusFUTURE-
dc.subject.keywordPlusFLOW-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 25 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0