Observation of an exceptional point in a non-Hermitian metasurface

Cited 58 time in webofscience Cited 19 time in scopus
  • Hit : 349
  • Download : 296
DC FieldValueLanguage
dc.contributor.authorPark, Sang Hyunko
dc.contributor.authorLee, Sung-Gyuko
dc.contributor.authorBaek, Soojeongko
dc.contributor.authorHa, Taewooko
dc.contributor.authorLee, Sanghyubko
dc.contributor.authorMin, Bumkiko
dc.contributor.authorZhang, Shuangko
dc.contributor.authorLawrence, Markko
dc.contributor.authorKim, Teun-Teunko
dc.date.accessioned2020-07-21T08:55:14Z-
dc.date.available2020-07-21T08:55:14Z-
dc.date.created2020-07-15-
dc.date.issued2020-05-
dc.identifier.citationNANOPHOTONICS, v.9, no.5, pp.1031 - 1039-
dc.identifier.issn2192-8606-
dc.identifier.urihttp://hdl.handle.net/10203/275583-
dc.description.abstractExceptional points (EPs), also known as non-Hermitian degeneracies, have been observed in parity-time symmetric metasurfaces as parity-time symmetry breaking points. However, the parity-time symmetry condition puts constraints on the metasurface parameter space, excluding the full examination of unique properties that stem from an EP. Here, we thus design a general non-Hermitian metasurface with a unit cell containing two orthogonally oriented split-ring resonators (SRRs) with overlapping resonance but different scattering rates and radiation efficiencies. Such a design grants us full access to the parameter space around the EP. The parameter space around the EP is first examined by varying the incident radiation frequency and coupling between SRRs. We further demonstrate that the EP is also observable by varying the incident radiation frequency along with the incident angle. Through both methods, we validate the existence of an EP by observing unique level crossing behavior, eigenstate swapping under encirclement, and asymmetric transmission of circularly polarized light.-
dc.languageEnglish-
dc.publisherWALTER DE GRUYTER GMBH-
dc.titleObservation of an exceptional point in a non-Hermitian metasurface-
dc.typeArticle-
dc.identifier.wosid000543258000006-
dc.identifier.scopusid2-s2.0-85079805419-
dc.type.rimsART-
dc.citation.volume9-
dc.citation.issue5-
dc.citation.beginningpage1031-
dc.citation.endingpage1039-
dc.citation.publicationnameNANOPHOTONICS-
dc.identifier.doi10.1515/nanoph-2019-0489-
dc.contributor.localauthorMin, Bumki-
dc.contributor.nonIdAuthorPark, Sang Hyun-
dc.contributor.nonIdAuthorLee, Sung-Gyu-
dc.contributor.nonIdAuthorHa, Taewoo-
dc.contributor.nonIdAuthorLee, Sanghyub-
dc.contributor.nonIdAuthorZhang, Shuang-
dc.contributor.nonIdAuthorLawrence, Mark-
dc.contributor.nonIdAuthorKim, Teun-Teun-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthormetamaterials-
dc.subject.keywordAuthornon-Hermitian photonics-
dc.subject.keywordAuthorexceptional point-
dc.subject.keywordAuthorasymmetric polarization conversion-
dc.subject.keywordAuthorphase singularity-
dc.subject.keywordPlusPHYSICS-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 58 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0