Deep Neural Network-Based Landmark Selection Method for Optical Navigation on Lunar Highlands

Cited 10 time in webofscience Cited 5 time in scopus
  • Hit : 392
  • Download : 299
DC FieldValueLanguage
dc.contributor.authorLee, Hoonheeko
dc.contributor.authorChoi, Han-Limko
dc.contributor.authorJung, Dawoonko
dc.contributor.authorChoi, Sujinko
dc.date.accessioned2020-07-18T00:57:04Z-
dc.date.available2020-07-18T00:57:04Z-
dc.date.created2020-07-15-
dc.date.issued2020-05-
dc.identifier.citationIEEE ACCESS, v.8, pp.99010 - 99023-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://hdl.handle.net/10203/275505-
dc.description.abstractSpacecraft that rely on self-localization based on optical terrain images require suitable landmark information along their flight paths. When navigating within the vicinity of the moon, a lunar crater is an intuitive choice. However, in highland areas or regions having low solar altitudes, craters are less reliable because of heavy shadowing, which results in infrequent and unpredictable crater detections. This paper, therefore, presents a method for suggesting navigation landmarks that are usable, even with unfavorable illumination and rough terrain, and it provides a procedure for applying this method to a lunar flight plan. To determine a good landmark, a convolutional neural network (CNN)-based object detector is trained to distinguish likely landmark candidates under varying lighting geometries and to predict landmark detection probabilities along flight paths attributable to various dates. Dates having more favorable detection probabilities can be determined in advance, providing a useful tool for mission planning. Numerical experiments show that the proposed landmark detector generates usable navigation information at sun elevations of less than 1.8 & x00B0; in highland areas.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleDeep Neural Network-Based Landmark Selection Method for Optical Navigation on Lunar Highlands-
dc.typeArticle-
dc.identifier.wosid000541127800006-
dc.identifier.scopusid2-s2.0-85086315158-
dc.type.rimsART-
dc.citation.volume8-
dc.citation.beginningpage99010-
dc.citation.endingpage99023-
dc.citation.publicationnameIEEE ACCESS-
dc.identifier.doi10.1109/ACCESS.2020.2996403-
dc.contributor.localauthorChoi, Han-Lim-
dc.contributor.nonIdAuthorJung, Dawoon-
dc.contributor.nonIdAuthorChoi, Sujin-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorMoon-
dc.subject.keywordAuthorNavigation-
dc.subject.keywordAuthorOptical imaging-
dc.subject.keywordAuthorSurface topography-
dc.subject.keywordAuthorLighting-
dc.subject.keywordAuthorSun-
dc.subject.keywordAuthorCameras-
dc.subject.keywordAuthorConvolutional neural network-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorlunar landmark-
dc.subject.keywordAuthorlunar spacecraft-
dc.subject.keywordAuthoroptical image-based navigation-
dc.subject.keywordAuthortemplate matching-
dc.subject.keywordAuthorterrain-referenced absolute navigation-
dc.subject.keywordAuthorvision-based navigation-
dc.subject.keywordPlusCRATER DETECTION-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0