Ionic Liquid-Based Electrolytes for Energy Storage Devices: A Brief Review on Their Limits and Applications

Cited 121 time in webofscience Cited 72 time in scopus
  • Hit : 238
  • Download : 240
DC FieldValueLanguage
dc.contributor.authorKaruppasamy, K.ko
dc.contributor.authorTheerthagiri, Jayaramanko
dc.contributor.authorVikraman, Dhanasekaranko
dc.contributor.authorYim, Chang-Jooko
dc.contributor.authorHussain, Sajjadko
dc.contributor.authorSharma, Ramakantko
dc.contributor.authorMaiyalagan, Thandavaryanko
dc.contributor.authorQin, Jiaqianko
dc.contributor.authorKim, Hyun-Seokko
dc.date.accessioned2020-06-22T10:20:15Z-
dc.date.available2020-06-22T10:20:15Z-
dc.date.created2020-06-15-
dc.date.issued2020-04-
dc.identifier.citationPOLYMERS, v.12, no.4-
dc.identifier.issn2073-4360-
dc.identifier.urihttp://hdl.handle.net/10203/274775-
dc.description.abstractSince the ability of ionic liquid (IL) was demonstrated to act as a solvent or an electrolyte, IL-based electrolytes have been widely used as a potential candidate for renewable energy storage devices, like lithium ion batteries (LIBs) and supercapacitors (SCs). In this review, we aimed to present the state-of-the-art of IL-based electrolytes electrochemical, cycling, and physicochemical properties, which are crucial for LIBs and SCs. ILs can also be regarded as designer solvents to replace the more flammable organic carbonates and improve the green credentials and performance of energy storage devices, especially LIBs and SCs. This review affords an outline of the progress of ILs in energy-related applications and provides essential ideas on the emerging challenges and openings that may motivate the scientific communities to move towards IL-based energy devices. Finally, the challenges in design of the new type of ILs structures for energy and environmental applications are also highlighted.-
dc.languageEnglish-
dc.publisherMDPI-
dc.titleIonic Liquid-Based Electrolytes for Energy Storage Devices: A Brief Review on Their Limits and Applications-
dc.typeArticle-
dc.identifier.wosid000535587700188-
dc.identifier.scopusid2-s2.0-85084554903-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue4-
dc.citation.publicationnamePOLYMERS-
dc.identifier.doi10.3390/polym12040918-
dc.contributor.nonIdAuthorKaruppasamy, K.-
dc.contributor.nonIdAuthorTheerthagiri, Jayaraman-
dc.contributor.nonIdAuthorVikraman, Dhanasekaran-
dc.contributor.nonIdAuthorYim, Chang-Joo-
dc.contributor.nonIdAuthorHussain, Sajjad-
dc.contributor.nonIdAuthorMaiyalagan, Thandavaryan-
dc.contributor.nonIdAuthorQin, Jiaqian-
dc.contributor.nonIdAuthorKim, Hyun-Seok-
dc.description.isOpenAccessY-
dc.type.journalArticleReview-
dc.subject.keywordAuthorionogel-
dc.subject.keywordAuthorpolymer electrolytes-
dc.subject.keywordAuthorenergy storage-
dc.subject.keywordAuthorelectric double-layer capacitors-
dc.subject.keywordAuthorinterfacial property-
dc.subject.keywordPlusGEL POLYMER ELECTROLYTES-
dc.subject.keywordPlusDOUBLE-LAYER CAPACITORS-
dc.subject.keywordPlusALL-SOLID-STATE-
dc.subject.keywordPlusGRAPHENE-BASED SUPERCAPACITORS-
dc.subject.keywordPlusHIGH-PERFORMANCE SUPERCAPACITORS-
dc.subject.keywordPlusSURFACE FUNCTIONAL-GROUPS-
dc.subject.keywordPlusCARBON-FIBER PAPER-
dc.subject.keywordPlusHIGH-POWER DENSITY-
dc.subject.keywordPlusLI-ION-
dc.subject.keywordPlusASSISTED SYNTHESIS-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 121 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0