Finding Hidden Signals in Chemical Sensors Using Deep Learning

Cited 41 time in webofscience Cited 21 time in scopus
  • Hit : 415
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorCho, Soo-Yeonko
dc.contributor.authorLee, Youhanko
dc.contributor.authorLee, Sangwonko
dc.contributor.authorKang, Hohyungko
dc.contributor.authorKim, Jaehoonko
dc.contributor.authorChoi, Junghoonko
dc.contributor.authorRyu, Jinko
dc.contributor.authorJoo, Heeeunko
dc.contributor.authorJung, Hee-Taeko
dc.contributor.authorKim, Jihanko
dc.date.accessioned2020-05-26T08:20:10Z-
dc.date.available2020-05-26T08:20:10Z-
dc.date.created2020-05-25-
dc.date.created2020-05-25-
dc.date.created2020-05-25-
dc.date.created2020-05-25-
dc.date.created2020-05-25-
dc.date.created2020-05-25-
dc.date.issued2020-05-
dc.identifier.citationANALYTICAL CHEMISTRY, v.92, no.9, pp.6529 - 6537-
dc.identifier.issn0003-2700-
dc.identifier.urihttp://hdl.handle.net/10203/274309-
dc.description.abstractAchieving high signal-to-noise ratio in chemical and biological sensors enables accurate detection of target analytes. Unfortunately, below the limit of detection (LOD), it becomes difficult to detect the presence of small amounts of analytes and extract useful information via any of the conventional methods. In this work, we examine the possibility of extracting "hidden signals" using deep neural network to enhance gas sensing below the LOD region. As a test case system, we conduct experiments for H-2 sensing in six different metallic channels (Au, Cu, Mo, Ni, Pt, Pd) and demonstrate that deep neural network can enhance the sensing capabilities for H-2 concentration below the LOD. We demonstrate that this technique could be universally used for different types of sensors and target analytes. Our approach can extract new information from the hidden signals, which can be crucial for next-generation chemical sensing applications and analytical chemistry.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleFinding Hidden Signals in Chemical Sensors Using Deep Learning-
dc.typeArticle-
dc.identifier.wosid000530658600048-
dc.identifier.scopusid2-s2.0-85084935802-
dc.type.rimsART-
dc.citation.volume92-
dc.citation.issue9-
dc.citation.beginningpage6529-
dc.citation.endingpage6537-
dc.citation.publicationnameANALYTICAL CHEMISTRY-
dc.identifier.doi10.1021/acs.analchem.0c00137-
dc.contributor.localauthorJung, Hee-Tae-
dc.contributor.localauthorKim, Jihan-
dc.contributor.nonIdAuthorKim, Jaehoon-
dc.contributor.nonIdAuthorRyu, Jin-
dc.contributor.nonIdAuthorJoo, Heeeun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusHIGH-RESOLUTION-
dc.subject.keywordPlusGAS SENSORS-
dc.subject.keywordPlusNOISE-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordPlusXPS-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 41 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0